摘要:
Implants (7) for forming a positive connection with human or animal parts include a material, such as thermoplastics and thixotropic materials, that can be liquefied by means of mechanical energy. The implants (7) are brought into contact with the tissue part, are subjected to the action of ultrasonic energy while being pressed against the tissue part. The liquefiable material liquefies and is pressed into openings or surface asperities of the tissue part so that, once solidified, the implant is positively joined thereto. The implantation involves the use of an implantation device that includes a generator (2), an oscillating element, and a resonator (6). The generator (2) causes the oscillating element to mechanically oscillate, and the element transmits the oscillations to the resonator (6). The resonator (6) is used to press the implant (7) against the tissue part to transmit oscillations to the implant (7).
摘要:
A method of anchoring a connector in a lightweight building element is provided. The connector includes a sleeve element and a piston element with a shaft portion, wherein the shaft portion is guided by the sleeve element. The piston element and/or the sleeve element includes a thermoplastic material at least at an interface portion between the head portion and the sleeve portion. The method includes the steps of providing the connector, of providing a through hole in the first building layer of the lightweight building element, of inserting the connector through the through hole and until a distal portion rests against the second building layer. Therein, it may be the sleeve element or the piston element or both, the sleeve element and the piston element that rest(s) against the second building layer.
摘要:
A first and a second object (1 and 2) are joined with the aid of a joining element (8) including at least in the region of its distal and proximal ends (8.1 and 8.2) a thermoplastic material. Two blind holes (5 and 6) facing each other are provided in the two objects (1 and 2) and the joining element (8) is positioned in the blind holes such that its distal and proximal ends (8.1) are in contact with the bottom faces of the blind holes and such that there is a gap (9) between the two objects (1 and 2). This assembly is then positioned between a support (3) and a sonotrode (4). The sonotrode (4) and the support (3) are forced towards each other, while the sonotrode (4) is vibrated, thereby liquefying at least part of the material having thermoplastic properties, there, where the joining element ends (8.1 and 8.2) are pressed against the bottom faces of the holes (5 and 6) and allowing the liquefied material to infiltrate into pores of the hole surfaces or unevennesses or openings provided in the hole surfaces.
摘要:
A device for the anchoring of a suture in tissue includes a guide sleeve, a sonotrode, an anchor and the suture. The guide sleeve has a distal part with a smaller cross section and a proximal part with a larger cross section. The sonotrode extends through the lumen of the guide sleeve and has a distal end and a proximal end, the proximal end being designed for coupling the sonotrode to a vibration source (e.g. an ultrasonic device). The anchor is arranged at the distal end of the device and includes an anchor foot and an anchoring sleeve sitting on a shoulder of the anchor foot. The anchoring sleeve consists of a material which is liquefiable through mechanical vibrations. A middle portion of the suture runs through the anchor foot and two end portions of the suture are attached to the guide sleeve. The anchoring sleeve is clamped or clampable between the anchor foot and a pushing sleeve or the sonotrode or the guide sleeve. The device is particularly suitable for the anchoring of sutures in bone tissue.
摘要:
A device according to the invention for deflecting mechanical oscillations, at an oscillation receiver location may be set into oscillation along a first axis, and transmits such an oscillation into an oscillation along a second axis at an oscillation output location, wherein the first and the second axis form an angle to one another. The device in characterized essentially by the fact that it includes an elongate, bent oscillation element, on whose one end a coupling-in point and at whose other end a coupling-out point is arranged, wherein the device is designed in a manner such that the oscillation element oscillates transversally at the coupling-in point and at the coupling-out point, when the oscillation receiver location is subjected to an oscillation.
摘要:
Am implant (1), in particular a dental implant, comprises surface regions (4) of a first type which have osseo-integrative, inflammation-inhibiting, infection-combating and/or growth-promoting properties, and surface regions (8) of a second type which consist of a material which is liquefiable by mechanical oscillations. The implant is positioned in an opening of e.g. a jawbone and then mechanical oscillations, e.g. ultrasound is applied to it while it is pressed against the jawbone. The liquefiable material is such liquefied at least partly and is pressed into unevennesses and pores of the surrounding bone tissue where after resolidification it forms a positive-fit connection between the implant and the bone tissue. The surface regions of the two types are arranged and dimensioned such that, during implantation, the liquefied material does not flow or flows only very little over the surface regions of the first type such enabling the biologically integrative properties of these surface regions to start acting directly after implantation. The dental implant comprises a central implant part (1) which for example consists of titanium, which comprises at its proximal end a fixation location (3) or an artificial tooth crown, and which forms the surface regions (4) of the first type. Furthermore the implant comprises a peripheral implant part (2) which consists of a liquefiable material and forms the surface regions (8) of the second type. The dental implant achieves with the help of the positive fit a very good (primary) stability which is later taken over by the (secondary) stability of the osseointegration when resorbable liquefiable materials are used or which is supplemented by the stability of osseointegration when non-resorbable liquefiable materials are used.
摘要:
A preparation (10, 11,12,13) to be fixed to a natural tooth part or tooth, in particular for the replacement of a load-bearing tooth part, is for example a filling for a drilled-out tooth (1), a crown, bridge or prosthesis to be placed on a tooth stub, or a tooth pin to be fixed in a tooth root for fastening an artificial tooth, a bridge or a prosthesis. The preparation has surface regions which consist of a material with thermoplastic properties. The preparation (10, 11, 12,13) is designed in a manner such that it has oscillation properties with such low damping losses that for a liquefaction of the material with thermoplastic properties by way of oscillations there are local stress concentrations required, and in a manner such that such stress concentrations only occur in the region of the preparation surface. The preparation is positioned on a suitably prepared natural tooth part in a manner such that the material with the thermoplastic properties is in contact or may be brought into contact with the dentin surface and/or enamel surface. The preparation is then made to mechanically oscillate and is simultaneously pressed against the natural tooth part, whereby the material with the thermoplastic properties is at least partly liquefied and brought into intimate contact with the dentin or enamel surface in a manner such that after solidification it forms a positive fit and/or material fit connection. Teeth restored with such preparations have a high stability and a long life, which in particular is attributed to the fact that the thermoplastic material, in contrast to cements used for the same purpose, shrinks less and has the ability to relieve internal stress by creeping.
摘要:
A first and a second object are joined with the aid of a joining element including at least in the region of its distal and proximal ends a thermoplastic material. Two blind holes facing each other are provided in the two objects and the joining element is positioned in the blind holes such that its distal and proximal ends are in contact with the bottom faces of the blind holes and such that there is a gap between the two objects. This assembly is then positioned between a support and a sonotrode. The sonotrode and the support are forced towards each other, while the sonotrode is vibrated, thereby liquefying at least part of the material having thermoplastic properties, there, where the joining element ends are pressed against the bottom faces of the holes and allowing the liquefied material to infiltrate into pores.
摘要:
A light diffuser (10), which is particularly suitable for introducing diffuse light into a tissue, is produced by interpenetration of a diffuser material in a liquid state into a boundary layer (4) of a porous shaping material, by which process a diffuser surface is formed having a surface structure which represents essentially a negative of the pore structure of the shaping material and includes undercut structures induced by a surface tension. The light diffuser (10) is e.g. produced by introducing a diffuser blank (1) including material which is liquefiable through mechanical vibration into the shaping material and simultaneously stimulating it with mechanical vibrations, such that the liquefiable material liquefies at least there where it is in contact with the shaping material and is pressed into the shaping material. An in situ production of the diffuser is particularly advantageous for photodynamic therapy in bone tissue (20).
摘要:
A method suitable for anchoring an anchoring element in an object, which anchoring element is compressible in the direction of a compression axis under local enlargement of a distance between a peripheral anchoring element surface and the compression axis. The anchoring element has a coupling-in face which serves for coupling the mechanical vibrations into the anchoring element, which coupling-in face is not parallel to the compression axis. The anchoring element further includes a thermoplastic material which in areas of the peripheral surface enlargement forms at least a part of the surface of the anchoring element, the method includes the steps of: providing a bore in the object; positioning the anchoring element in the bore; and coupling the compressing force and the mechanical vibrations through the coupling-in face into the positioned anchoring element.