Abstract:
A system and method for improving installation of a prosthesis which may include assembly of a modular prosthesis. Devices include prosthesis installation tools, prosthesis assembly tools, site preparation systems, and improved power tools used in implant site preparation, the tools including a secondary motion that preferably includes an ultrasonic vibration.
Abstract:
A system and method for improving installation of a prosthesis. Devices include prosthesis installation tools, prosthesis assembly tools, site preparation systems, and improved power tools used in implant site preparation, the tools including a secondary motion that preferably includes an ultrasonic vibration.
Abstract:
A system and method for improving installation of a prosthesis. Devices include prosthesis installation tools, prosthesis assembly tools, site preparation systems, and improved power tools used in implant site preparation.
Abstract:
A torsional-mode ultrasonic vibration generator is manufactured with longitudinal slots extending along its horn which damp unwanted vibrational modes and allow it to be made significantly smaller than previous apparatus. The torsional-mode ultrasonic generator is operable with a suite of surgical tools, to perform portions of an orthopaedic arthroplasty revision procedure. Three of the tools are for removing bone cement from within a bone cavity on a prosthesis cemented into the bone cavity. Three other tools are for separating an uncemented prosthesis from ingrown bone by cutting the bone between the prosthesis and walls of the bone cavity. The seventh tool is provided with sensors to determine a separation between a bone-cutting tool head and a metal prosthesis, feedback from the sensors being used to control servo motors of an articulated mounting for the seventh tool, to maintain the separation at a desirable value.
Abstract:
A human or animal joint is treated by introduction of a device between the suitably prepared articulating surfaces of the joint, and the device is anchored in both these articular surfaces with a material having thermoplastic properties. For allowing at least limited articulation of the joint after implantation, the device includes two articulating portions, wherein one of the articulating portions is anchored in each articulating surfaces of the joint. On implantation a proximal face of the device is contacted with a vibrating tool and the vibration is transmitted through parts of the device to locations in which the material having thermoplastic properties is near the bone tissue of the articulating surfaces of the joint and in which liquefaction is desired. The liquefied material penetrates the bone tissue and, on re-solidification forms a positive fit connection between the device and the bone tissue
Abstract:
An implant or endoprosthesis suitable to be implanted in human or animal tissue includes two (or more than two) parts to be joined in situ. Each one of the parts includes a joining location, the two joining locations facing each other when the device parts are positioned for being joined together, wherein one of the joining locations includes a material which is liquefiable by mechanical vibration and the other one of the joining locations includes a material which is not liquefiable by mechanical vibration and a structure (e.g. undercut cavities or protrusions) suitable for forming a positive fit connection with the liquefiable material. The joining process is effected by pressing the two device parts against each other and by applying ultrasonic vibration to one of the device parts when the two parts are positioned relative to each other such that the two joining locations are in contact with each other.
Abstract:
Spinal tissue distraction devices that include a member which has a pre-deployed configuration for insertion between tissue layers and a deployed configuration in which the member, by change of configuration, forms a support structure for separating and supporting layers of spinal tissue.
Abstract:
A dissociation device comprises a transducer configured to produce acoustic vibration selected to be sufficient to dissociate a male portion from an engaged female portion of a medical device, a power source configured to supply power to the transducer, and a processor for controlling the transducer. The transducer can be configured to produce ultrasonic acoustic vibration. The male portion of the medical device can comprise a male taper and the female portion can comprise a corresponding female taper.
Abstract:
Method and apparatus are disclosed for distracting tissue and particularly spinal tissue. The device and method may include insertion of at least one elongated member and an augmenting member to form a structure between the tissues to be distraction, such that a dimensional aspect of the structure is augmented upon movement of the augmenting structure.
Abstract:
A method for locating a material having thermoplastic properties in pores of bone tissue includes providing a pin having the material having thermoplastic properties and a core, wherein the material having thermoplastic properties is arranged on the circumferential surface of the core constituting an outer region of the pin. An opening is provided in the bone tissue, and the pin is positioned at least partly in the opening. The outer region of the pin is then impinged with mechanical vibration energy for a time sufficient for liquefying at least part of the material having thermoplastic properties, and, in a liquefied state, pressing it into the pores of the bone tissue surrounding the opening. The vibration energy is stopped for a time sufficient for re-solidification of the liquefied material, and then the core is removed.