Abstract:
A method of making a prosthetic dental item comprises selecting a block having a square or rectangular cross-section along is extent, wherein said block comprises polyetheretherketone and, optionally, an apatite, wherein said polymeric material has a crystallinity of at least 25%. The method comprises machining the block in dependence upon data collated using digital technology. Since the crystallinity of the material selected is high, a post-machining step whereby crystallinity is increased can be avoided, and dental items of high precision can be formed.
Abstract:
A method of smoothing teeth is disclosed that is based on surprising evidence achieved by practicing a method involving application of calcium powder or calcium containing composition to teeth, and maintaining it in contact with the teeth by application of an edible adherent wax containing material, that serves to maintain contact between the teeth and the calcium powder or calcium containing composition for at least one hour.
Abstract:
A dental restorative composition is provided that includes a polymerizable resin, a substantially translucent structural filler, a nanofiller having a mean particle size less than 100 nm, and at least one rheology-modifying additive. In one embodiment, the structural filler has a refractive index substantially similar to that of the polymerizable resin, a coarse particle fraction, and a fine particle fraction having a mean particle size greater than 0.1 μm and smaller than the mean particle size of the coarse particle fraction. The relative ratio of the coarse particle fraction to the fine particle fraction is in the range from about 12:1 to about 2:1 by volume, the particle size distribution of each fraction is essentially monomodal, and the D(90) of the fine particle fraction is less than or equal to the D(10) of the coarse particle fraction.
Abstract:
A solid freeform fabrication material set includes a material A for solid freeform fabrication and a material B for solid freedom fabrication. The material A includes a polymerization initiator A and at least one of an organic particle and an inorganic particle. The material B includes a polymerizable compound B.
Abstract:
The invention relates to a kit of parts comprising part A and part B, part A comprising a polymerizable component having an acid group in the molecule, an initiator, part B comprising an activator, and a film former with a molecular weight of at least 1000.The invention also relates to a composition obtainable by mixing the components contained in the kit of parts and to a process for producing the kit of parts comprising the steps of bringing the components contained in part B of the kit in contact with a surface, drying the surface to form a film.
Abstract:
The present invention relates to a resin composition, in particular suitable for printing, a kit comprising the components of the resin composition, a printing method utilizing the resin composition, a polymer obtained by the printing method, an article comprising or formed from the polymer, and uses thereof. The resin composition may be in particular suitable for printing and comprises at least one compound C1 having (i) at least one terminal alkyne functional group, and (ii) at least one functional group selected from the group consisting of a carbonate, a carbamate, and an ether; and at least one compound C2 having at least two thiol functional groups.
Abstract:
The invention relates to a polysiloxane compound comprising specific siloxane units, curable dental materials comprising one or more than one polysiloxane compound according to the invention, cured dental materials obtainable from the curable dental materials according to the invention, a method for preparation of polysiloxane compounds according to the invention, a method for preparing curable polysiloxane compounds according to the invention and a method for preparing cured dental materials according to the invention.
Abstract:
Disclosed is a method of manufacturing a multilayer zirconia block for artificial teeth, including a first material mixing step of mixing a 3 mol % yttrium oxide-tetragonal zirconia polycrystal and an organic binder, a second material mixing step of mixing a 3 mol % yttrium oxide-tetragonal zirconia polycrystal, a 5 mol % yttrium oxide-tetragonal zirconia polycrystal and an organic binder, a third material mixing step of mixing a 5 mol % yttrium oxide-tetragonal zirconia polycrystal and an organic binder, a compression molding step of sequentially placing the mixtures obtained in the first material mixing step, the second material mixing step, and the third material mixing step in a mold for compression molding and performing compression molding, and a calcination step of calcining a compression molded product obtained in the compression molding step. This method provides a multilayer zirconia block that contains yttrium oxide, the amount of which is adjusted in the manufacturing process, thus showing a color similar to that of natural teeth after impregnation with a coloring solution.
Abstract:
Provided are: an organic/inorganic composite, and a manufacturing method therefor; and a dental material and bone substitute material manufactured using the organic/inorganic composite. The organic/inorganic composite includes: (A) 100 parts by mass of a thermoplastic resin containing as a main component at least one kind selected from a polyarylketone resin and a polysulfone resin; and (B) 60 to 300 parts by mass of an inorganic particle mixture dispersed in the thermoplastic resin, in which the inorganic particle mixture contains inorganic particles each having a particle diameter of from 200 to 700 nm at a content of 25 vol % or more, and inorganic particles each having a particle diameter of from 40 to 100 nm at a content of 10 vol % or more.
Abstract:
This invention provides fluid formulations and materials produced therefrom for repairing dental and bone defects, processes for the production of the fluid formulations and materials, and to uses of these formulations and materials. In particular, the invention provides the use cationic polymers such as polylysine in these formulations and materials, and the advantageous properties derived therefrom which include mechanical and antibacterial properties.