Abstract:
A method for analyzing a sample with a charged particle beam including directing the beam toward the sample surface; milling the surface to expose a second surface in the sample in which the end of the second surface distal to ion source is milled to a greater depth relative to a reference depth than the end of the first surface proximal to ion source; directing the charged particle beam toward the second surface to form one or more images of the second surface; forming images of the cross sections of the multiple adjacent features of interest by detecting the interaction of the electron beam with the second surface; assembling the images of the cross section into a three-dimensional model of one or more of the features of interest. A method for forming an improved fiducial and determining the depth of an exposed feature in a nanoscale three-dimensional structure is presented.
Abstract:
Samples to be imaged in a Transmission Electron Microscope must be thinned to form a lamella with a thickness of, for example, 20 nm. This is commonly done by sputtering with ions in a charged particle apparatus equipped with a Scanning Electron Microscope (SEM) column, a Focused Ion Beam (FIB) column, and one or more Gas Injection Systems (GISses). A problem that occurs is that a large part of the lamella becomes amorphous due to bombardment by ions, and that ions get implanted in the sample. The invention provides a solution by applying a voltage difference between the capillary of the GIS and the sample, and directing a beam of ions or electrons to the jet of gas. The beam ionizes gas that is accelerated to the sample, where (when using a low voltage between sample and GIS) low energy milling occurs, and thus little sample thickness becomes amorphous.
Abstract:
An improved method of preparing ultra-thin TEM samples that combines backside thinning with an additional cleaning step to remove surface defects on the FIB-facing substrate surface. This additional step results in the creation of a cleaned, uniform “hardmask” that controls the ultimate results of the sample thinning, and allows for reliable and robust preparation of samples having thicknesses down to the 10 nm range.
Abstract:
The invention relates to a sample carrier for a transmission electron microscope. When using state of the art sample carriers, such as half-moon grids in combination with detectors detecting, for example, X-rays emitted at a large emittance angle, shadowing is a problem. Similar problems occur when performing tomography, in which the sample is rotated over a large angle.The invention provides a solution to shadowing by forming the parts of the grid bordering the interface between sample and grid as tapering parts.
Abstract:
A multi-beam apparatus for inspecting or processing a sample with a multitude of focused beams uses a multitude of detectors for detecting secondary radiation emitted by the sample when is irradiated by the multitude of beams. Each detector signal comprises information caused by multiple beams, the apparatus equipped with a programmable controller for processing the multitude of detector signals to a multitude of output signals, using weight factors so that each output signal represents information caused by a single beam. The weight factors are dynamic weight factors depending on the scan position of the beams with respect to the detectors and the distance between sample and detectors.
Abstract:
The invention relates to a method of welding a vitreous biological sample at a temperature below the glass transition temperature of approximately −137° C. to a micromanipulator, also kept at a temperature below the glass transition temperature. Where prior art methods used IBID with, for example, propane, or a heated needle (heated resistively or by e/g/laser), the invention uses a vibrating needle to locally melt the sample. By stopping the vibration, the sample freezes to the micromanipulator. The heat capacity of the heated parts is small, and the amount of material that stays in a vitreous condition thus large.
Abstract translation:本发明涉及一种将玻璃态生物样品在低于大约-137℃的玻璃化转变温度的温度下焊接到也保持在低于玻璃化转变温度的温度下的显微操纵器的方法。 当现有技术方法使用IBID与例如丙烷或加热针(电阻加热或e / g /激光)时,本发明使用振动针来局部熔化样品。 通过停止振动,样品冻结到显微操纵器。 加热部件的热容量小,因此玻璃状态的材料的量变大。
Abstract:
The invention relates to a method of using a phase plate, having a thin film, in a transmission electron microscope (TEM), comprising: introducing the phase plate in the TEM; preparing the phase plate by irradiating the film with a focused electron beam; introducing a sample in the TEM; and forming an image of the sample using the prepared phase plate, wherein preparing the phase plate involves locally building up a vacuum potential resulting from a change in the electronic structure of the thin film by irradiating the phase plate with a focused beam of electrons, the vacuum potential leading to an absolute phase shift |φ| with a smaller value than at the non-irradiated thin film. Preferably the phase plate is heated to avoid contamination. The phase shift achieved with this phase plate can be tuned by varying the diameter of the irradiated spot.
Abstract:
Curtaining artifacts on high aspect ratio features are reduced by reducing the distance between a protective layer and feature of interest. For example, the ion beam can mill at an angle to the work piece surface to create a sloped surface. A protective layer is deposited onto the sloped surface, and the ion beam mills through the protective layer to expose the feature of interest for analysis. The sloped mill positions the protective layer close to the feature of interest to reduce curtaining.
Abstract:
An improved method and apparatus for S/TEM sample preparation and analysis. Preferred embodiments of the present invention provide improved methods for TEM sample creation, especially for small geometry (
Abstract:
A method and system for improved planar deprocessing of semiconductor devices using a focused ion beam system. The method comprises defining a target area to be removed, the target area including at least a portion of a mixed copper and dielectric layer of a semiconductor device; directing a precursor gas toward the target area; and directing a focused ion beam toward the target area in the presence of the precursor gas, thereby removing at least a portion of a first mixed copper and dielectric layer and producing a uniformly smooth floor in the milled target area. The precursor gas causes the focused ion beam to mill the copper at substantially the same rate as the dielectric. In a preferred embodiment, the precursor gas comprises methyl nitroacetate. In alternative embodiments, the precursor gas is methyl acetate, ethyl acetate, ethyl nitroacetate, propyl acetate, propyl nitroacetate, nitro ethyl acetate, methyl methoxyacetate, or methoxy acetylchloride.