Abstract:
Beam-induced deposition decomposes a precursor at precise positions on a surface. The surface is processed to provide linker groups on the surface of the deposit, and the sample is processed to attach nano-objects to the linker groups. The nano-objects are used in a variety of application. When a charged particle beam is used to decompose the precursor, the charged particle beam can be used to form an image of the surface with the nano-objects attached.
Abstract:
The present invention provides a plasma ion beam system that includes multiple gas sources and that can be used for performing multiple operations using different ion species to create or alter submicron features of a work piece. The system preferably uses an inductively coupled, magnetically enhanced ion beam source, suitable in conjunction with probe-forming optics sources to produce ion beams of a wide variety of ions without substantial kinetic energy oscillations induced by the source, thereby permitting formation of a high resolution beam.
Abstract:
An improved method of beam deposition to deposit a low-resistivity metal. Preferred embodiments of the present invention use a novel focused ion beam induced deposition precursor to deposit low-resistivity metallic material such as tin. Applicants have discovered that by using a methylated or ethylated metal such as hexamethylditin as a precursor, material can be deposited having a resistivity as low as 40 μΩ·cm.
Abstract:
A gas injection system provides a local region at the sample surface that has sufficient gas concentration to be ionized by secondary electrons to neutralize charged on the sample surface. In some embodiments, a gas concentration structure concentrates the gas near the surface. An optional hole in the gas concentration structure allows the charged particle beam to impact the interior of a shrouded region. In some embodiments, an anode near the surface increases the number of ions that return to the work piece surface for charge neutralization, the anode in some embodiments being a part of the gas injection system and in some embodiments being a separate structure.
Abstract:
A micromachining process includes exposing the work piece surface to a precursor gas including a compound having an acid halide functional group; and irradiating the work piece surface with a beam in the presence of the precursor gas, the precursor gas reacting in the presence of the particle beam to remove material from the work piece surface.
Abstract:
The present invention provides a plasma ion beam system that includes multiple gas sources and that can be used for performing multiple operations using different ion species to create or alter submicron features of a work piece. The system preferably uses an inductively coupled, magnetically enhanced ion beam source, suitable in conjunction with probe-forming optics sources to produce ion beams of a wide variety of ions without substantial kinetic energy oscillations induced by the source, thereby permitting formation of a high resolution beam.
Abstract:
An improved process control for a charged beam system is provided that allows the capability of accurately producing complex two and three dimensional structures from a computer generated model in a material deposition process. The process control actively monitors the material deposition process and makes corrective adjustments as necessary to produce a pattern or structure that is within an acceptable tolerance range with little or no user intervention. The process control includes a data base containing information directed to properties of a specific pattern or structure and uses an algorithm to instruct the beam system during the material deposition process. Feedback through various means such as image recognition, chamber pressure readings, and EDS signal can be used to instruct the system to make automatic system modifications, such as, beam and gas parameters, or other modifications to the pattern during a material deposition run.
Abstract:
A method and system for improved planar deprocessing of semiconductor devices using a focused ion beam system. The method comprises defining a target area to be removed, the target area including at least a portion of a mixed copper and dielectric layer of a semiconductor device; directing a precursor gas toward the target area; and directing a focused ion beam toward the target area in the presence of the precursor gas, thereby removing at least a portion of a first mixed copper and dielectric layer and producing a uniformly smooth floor in the milled target area. The precursor gas causes the focused ion beam to mill the copper at substantially the same rate as the dielectric. In a preferred embodiment, the precursor gas comprises methyl nitroacetate. In alternative embodiments, the precursor gas is methyl acetate, ethyl acetate, ethyl nitroacetate, propyl acetate, propyl nitroacetate, nitro ethyl acetate, methyl methoxyacetate, or methoxy acetylchloride.
Abstract:
The present invention provides a plasma ion beam system that includes multiple gas sources and that can be used for performing multiple operations using different ion species to create or alter submicron features of a work piece. The system preferably uses an inductively coupled, magnetically enhanced ion beam source, suitable in conjunction with probe-forming optics sources to produce ion beams of a wide variety of ions without substantial kinetic energy oscillations induced by the source, thereby permitting formation of a high resolution beam.
Abstract:
A method and system for improved planar deprocessing of semiconductor devices using a focused ion beam system. The method comprises defining a target area to be removed, the target area including at least a portion of a mixed copper and dielectric layer of a semiconductor device; directing a precursor gas toward the target area; and directing a focused ion beam toward the target area in the presence of the precursor gas, thereby removing at least a portion of a first mixed copper and dielectric layer and producing a uniformly smooth floor in the milled target area. The precursor gas causes the focused ion beam to mill the copper at substantially the same rate as the dielectric. In a preferred embodiment, the precursor gas comprises methyl nitroacetate. In alternative embodiments, the precursor gas is methyl acetate, ethyl acetate, ethyl nitroacetate, propyl acetate, propyl nitroacetate, nitro ethyl acetate, methyl methoxyacetate, or methoxy acetylchloride.