Abstract:
In quantitative analysis of an element in a specimen in which characteristic X-rays generated from the specimen upon irradiation with an electron beam are detected, absorption current values of the specimen and a reference sample are measured before the final measurement, the value of ratio between thus measured values is determined, and the absorption current value of the specimen measured at the time of final measurement is multiplied by this value of ratio, so as to calculate the irradiation current value thereof, thereby substantially monitoring the irradiation current.
Abstract:
An electron microscope is offered which is fitted with an X-ray spectrometer having a compact optical system and high resolution. The spectrometer has a spectrometer chamber whose inside is evacuated by a vacuum pumping system. A diffraction grating having unequally spaced grooves is placed in the chamber. An X-ray detector is mounted to an end of the chamber. The X-ray spectrometer is mounted to the sidewall of the electron microscope via a gate valve. A specimen is irradiated with an electron beam and emits characteristic X-rays, which are made to impinge on the face of the grating at a large angle with respect to the normal line to the face. Diffracted X-rays from the grating reach the X-ray detector and are detected.
Abstract:
A sample is scanned with a focused electron beam so that secondary particles characteristic of the sample are generated therefrom and the generated particles are detected by a detector so as to be converted into an electric signal. The electric signal is converted into digital image data, which are stored in a image memory. The stored image data are displayed on a display along with digital SEM operating picture data stored in a memory of a personal computer. An operating signal generated by an input device is conducted to not only the personal computer but also an input control unit, which converts the operating signal into a control signal. This control signal is used to change a parameter associated with the image data, i.e., for example, to control focusing of the electron beam.
Abstract:
An apparatus and method of identifying substances contained in a sample to both identify the elements in the sample and to measure a distribution of the elements are provided. The sample is scanned with electron beams to form X-ray images of two or elements. These X-ray images can be used to form a scattering diagram, and the composition of known materials can be plotted on the scattering diagram. The substances contained in the samples can be identified, and the distribution of the substances can be obtained by comparing the data on the scattering diagram with the plot.
Abstract:
Method and apparatus of detecting, analyzing and evaluating the content of foreign matters such as dusts and impurities contained in various materials, units, processes and environment standing for constituting components of a mass production line during mass production start-up and during mass production, in order to manage a semiconductor production process. A mass production off-line system including an apparatus for detecting, analyzing and evaluating the content of foreign matters during the mass production start-up is separated from the production line and installed independently thereof. Monitors for detection of foreign matters are provided at necessary locations in the production line and monitor data is evaluated through various units to manage the content of foreign matters in the production line, permitting efficient and economical mass production start-up and mass production. The kind of element of a foreign matter on sampling wafer detected in the mass production line is analyzed by means of STM/STS and the results are compared with a data base to effect identification. A foreign matter or a contaminant is detected by detecting a scatttered beam, of a light spot which scans the surface of a substrate. The detection of the scattered beam is carried out under the condition that Rayleigh scattering of the light spot on the light spot irradiation and reflection paths and Rayleigh scattering of the scattered beam on the scattered beam detection path are suppressed to a minimum. For the suppression of Rayleigh scattering, a low-pressure or low-temperature atmosphere may be used.
Abstract:
A method and apparatus are provided for trace and other quantitative analysis with high efficiency of a component in a sample, with the analysis involving the removal by ion or other bombardment of a small quantity of ion and neutral atom groups from the sample, the conversion of selected neutral atom groups to photoions by laser initiated resonance ionization spectroscopy, the selective deflection of the photoions for separation from original ion group emanating from the sample, and the detection of the photoions as a measure of the quantity of the component. In some embodiments, the original ion group is accelerated prior to the RIS step for separation purposes. Noise and other interference are reduced by shielding the detector from primary and secondary ions and deflecting the photoions sufficiently to avoid the primary and secondary ions.
Abstract:
A charged-particle energy analyzer having means for irradiating a sample with a primary electron beam, deflecting electrode means which focus charged particle flux emitted from the sample onto a center axis of the primary electron beam or onto an identical circumference with its center on the axis, a slit disposed at the focus point of the charged particles, an energy analyzer whose object point lies at the focus point, a detector for detecting the charged particles analyzed by the energy analyzer, and charged particle flux deflecting means provided between the sample and the detector, for shielding by one part of the charged particle flux focused in a true circular form, to thereby make it possible not only to set a wide accepted solid angle for signals but also to get an information as to the concave or convex surface condition of the sample at the measured portion.
Abstract:
In an ion microanalyzer wherein the secondary ions emitted from a sample as a result of the bombardment of the sample by a primary ion beam are mass-analyzed and selected in accordance with their mass to electric charge ratios and the selected secondary ions are then detected by a detector, the image of the secondary ions emitted from the sample is formed through the converging action of a modified electrostatic lens on a slit disposed between the mass analyzing means and the detector or in front of the mass analyzing means.
Abstract:
A method and apparatus employing ion and electron beams for chemically analyzing a specimen. A specimen is mounted on a movable platform in an evacuated chamber and irradiated with an ion beam over a predetermined area of interest to liberate secondary ions. The secondary ion spectrum is analyzed with a mass filter and display unit to provide a spectral distribution. Ions having a particular mass-to-charge ratio are selected for spatial distribution analysis and the mass filter is tuned to the selected mass-to-charge ratio. The filtered beam of secondary ions passed through the mass filter is detected by an ion detector which generates a signal representative of secondary ion abundance at that mass-to-charge ratio. The ion detector output signals are used to control the intensity or deflection of a CRT beam. An independently generated electron beam is scanned over the specimen area irradiated by the ion beam and the CRT beam is swept in synchronism with the scanned electron beam. The electron beam, scanned over the ion irradiated specimen area, modulates the secondary ion yield at the point where both the electron beam and the ion beam are coincident on the specimen. The resulting display is a two dimensional spatial distribution map of the species in the specimen to which the mass filter is tuned.