Abstract:
A method for analyzing a sample by mass spectrometry includes producing ions from the sample, delivering the ions to an entrance of a multipole, and applying oscillatory and resolving DC voltages to electrodes of the multipole. The oscillatory and resolving DC voltages cause the multipole to selectively transmit to its distal end ions within a range of mass-to-charge ratios (m/z's) determined by the amplitudes of the oscillatory and resolving DC voltages. The method further includes acquiring data representative of the spatial distributions of ions transmitted by the multipole at a plurality of consecutive time points, and deconvolving the acquired data to produce a mass spectrum. Deconvolving the acquired data includes processing the data to compress a dynamic range of intensity values in the data.
Abstract:
An electron beam irradiation apparatus includes a turn-transfer mechanism; a turn irradiation chamber; an electron beam irradiation section; a replacement room configured to bring a target into and out of the turn irradiation chamber; an outer irradiation target holding table configured to form a part of the replacement room, and including an X-ray shielding mechanism, an airtightness maintaining mechanism, a target holding mechanism; an inner irradiation target holding table configured to form a part of the replacement room, and including an X-ray shielding mechanism, an airtightness maintaining mechanism, and a target holding mechanism, the inner irradiation target holding table being supported by the turn-transfer mechanism; a turning mechanism configured to drive the turn-transfer mechanism; and an elevator mechanism configured to move the turn-transfer mechanism, which supports the inner irradiation target holding table, up and down.
Abstract:
Improvements for viewing particles, e.g. electrons or ions, in mass spectrometer systems. A special kind of system allows a phosphor to be formed which does not include any kind of conductive layer thereon. The particles impinge directly on the phosphor, and produce light that shines through an ITO layer. This special system enables lower voltage, and smaller systems. Another improvement enables direct viewing of ions from the system.
Abstract:
A method is provided of increasing the resolution in a tandem mass spectrometer having a first quadrupole Q1 to select a parent ion, a second quadrupole Q2 which contains a target gas and forms a collision cell, and a third or analyzing quadrupole Q3 which generates a mass spectrum from daughter ions from Q2. In the method, the target thickness of the target gas in Q2 is held at least at 1.32.times.10.sup.15 cm.sup.-2, preferably at least 3.30.times.10.sup.15 cm.sup.-2, and the DC offset voltage between Q2 and Q3 is kept low or zero. This greatly improves the resolution available in Q3. Q3 is therefore operated with at least unit resolution, and in some cases with resolution of 1/2 or 1/3 amu, making it possible to resolve isotopes of singly, doubly or triply charged daughter ions.
Abstract:
Dissociations of multiple-charged ions are detected and analyzed by charge-separation tandem mass spectrometry. Analyte molecules are ionized to form multiple-charged parent ions. A particular charge parent ion state is selected in a first-stage mass spectrometer and its mass-to-charge ratio (M/Z) is detected to determine its mass and charge. The selected parent ions are then dissociated, each into a plurality of fragments including a set of daughter ions each having a mass of at least one molecular weight and a charge of at least one. Sets of daughter ions resulting from the dissociation of one parent ion (sibling ions) vary in number but typically include two to four ions, one or more multiply-charged. A second stage mass spectrometer detects mass-to-charge ratio (m/z) of the daughter ions and a temporal or temporo-spatial relationship among them. This relationship is used to correlate the daughter ions to determine which (m/z) ratios belong to a set of sibling ions. Values of mass and charge of each of the sibling ions are determined simultaneously from their respective (m/z) ratios such that the sibling ion charges are integers and sum to the parent ion charge.
Abstract:
A double focusing mass spectrometer is used as the second mass analyzer of a Mass Spectrometry/Mass Spectrometry Instrument comprising a uniform electric field and a magnetic sector. Fragment ions produced from precursor ions of a certain ionic species are introduced into a uniform electric field. The fragment ions travel along parabolic orbits and are separated according to their respective energy levels. The separated fragment ions are introduced into a magnetic sector and are dispersed according to their mass by the magnetic sector. A two-dimensional ion detector is disposed along a focal plane of the magnetic sector in order to simultaneously detect the fragment ions and to obtain a spectrum of the fragment ions.
Abstract:
A tandem mass spectrometer includes an ion source, a first mass analyzer, a microchannel collision plate, a second mass analyzer, and a detector. The microchannel collision plate comprises a matrix defining a plurality of microchannels which are disposed in a generally parallel orientation with a beam of parent ions emanating from the first mass analyzer. Collision of the parent ions with the internal surfaces of the microchannels causes the parent ions to dissociate into daughter ions. The second mass analyzer distinguishes between various mass fractions of the daughter ions, allowing the detector to quantitate said fractions and produce a mass spectra of the material being analyzed.
Abstract:
In a mass analyzer, an acceleration voltage is applied to an ionization chamber in which a voltage to be applied to repeller electrodes to repel ions is generated with reference to the acceleration voltage and a repeller voltage source is linked with a controller by use of a photocoupler or the like such that the repeller voltage is adjusted with the repeller voltage source electrically insulated from the controller. The repeller voltage can be easily and automatically adjusted by use of a low-voltage control signal so as to obtain a sensitivity developing the maximum value of the quantity of detected ions and hence a qualitative or quantitative analysis of a sample can be achieved with a high sensitivity. The controller processes digital signals and appropriate parameters are stored in a memory. Each parameter is changed with the center of change set to an appropriate parameter previously used and consequently the automatic control is simplified.
Abstract:
Mass spectrometer having an ion source, acceleration means able to impart to the ions an energy essentially dependent on their electric charge, means for producing in a sector a magnetic field orthogonal to the plane of the trajectory of the ions in order to inwardly curve said trajectory and means for detecting the ions. At the inlet of the magnetic sector are provided electrostatic means able to modify the tangential velocity of the ions and consequently their energy, in such a way that ions with different masses can, at different times, follow the same inwardly curved trajectory in the magnetic sector.
Abstract:
In an ion microanalyzer wherein the secondary ions emitted from a sample as a result of the bombardment of the sample by a primary ion beam are mass-analyzed and selected in accordance with their mass to electric charge ratios and the selected secondary ions are then detected by a detector, the image of the secondary ions emitted from the sample is formed through the converging action of a modified electrostatic lens on a slit disposed between the mass analyzing means and the detector or in front of the mass analyzing means.