Abstract:
A scanning electron microscope in which the contrast and the dark level of the video signal is automatically controlled. Specifically, the peak-to-peak video signal level or contrast is detected and compared with a reference signal. The difference signal therebetween is employed to control the gain imparted to the video signal and to thereby automatically control the video signal contrast. Similarly, the dark level is detected and compared with a reference signal. The difference signal therebetween is employed to bias the video signal and thereby automatically control the dark level of the video signal.
Abstract:
A method and apparatus employing ion and electron beams for chemically analyzing a specimen. A specimen is mounted on a movable platform in an evacuated chamber and irradiated with an ion beam over a predetermined area of interest to liberate secondary ions. The secondary ion spectrum is analyzed with a mass filter and display unit to provide a spectral distribution. Ions having a particular mass-to-charge ratio are selected for spatial distribution analysis and the mass filter is tuned to the selected mass-to-charge ratio. The filtered beam of secondary ions passed through the mass filter is detected by an ion detector which generates a signal representative of secondary ion abundance at that mass-to-charge ratio. The ion detector output signals are used to control the intensity or deflection of a CRT beam. An independently generated electron beam is scanned over the specimen area irradiated by the ion beam and the CRT beam is swept in synchronism with the scanned electron beam. The electron beam, scanned over the ion irradiated specimen area, modulates the secondary ion yield at the point where both the electron beam and the ion beam are coincident on the specimen. The resulting display is a two dimensional spatial distribution map of the species in the specimen to which the mass filter is tuned.
Abstract:
An electron gun biasing system, particularly adapted for use in an electron microscope, in which a plurality of resistors are provided in series with the cathode of the electron gun. In parallel with each of the resistors is a photoconductor, and means are provided for selectively illuminating the various photoconductors so as to short out various resistors, and thus vary the bias. Typically, the resistors and photoconductors may be located inside a shielded box, and a plurality of light pipes may be directed through openings in the shielded box, so that the ends of the light pipes will be adjacent the photoconductors. A plurality of lamps may then be disposed at the ends of the light pipes outside the box, the lamps being selectively illuminated by a simple lamp illumination circuit.