Abstract:
This composite charged particle beam device comprises a first charged particle beam column (6), a second charged particle beam column (1) which is equipped with a deceleration system, and is equipped with a detector (3) inside the column, a test piece stage (10) on which a test piece (9) is placed, and an electric field correction electrode (13) which is provided around the tip of the first charged particle beam column, wherein the electric field correction electrode is an electrode that corrects the electric field distribution formed in the vicinity of the test piece, and the electric field correction electrode is positioned between the test piece and the first charged particle beam column, and on the opposite side from the second charged particle beam column with respect to the optical axis of the first charged particle beam column.
Abstract:
A multiple charged particle beam apparatus includes: a first aperture array substrate to form multiple beams; a first grating lens that constitutes a concave lens by using the first aperture array substrate as a grating; a second aperture array substrate that allows the multiple beams to pass through; and a first limiting aperture substrate arranged in a position of a convergent point of the multiple beams between the first aperture array substrate and the second aperture array substrate, wherein a first aperture array image having passed through the first shaping aperture array substrate is formed on the second aperture array substrate by a lens action including a magnetic field distribution generated between the first aperture array substrate and the second aperture array substrate and having opposite signs and same magnitude and an electric field distribution generated by the first grating lens.
Abstract:
The present invention provides a scanning transmission electron microscope (STEM). In the STEM, a specimen is sandwiched between a variable axis objective lens and a variable axis collection lens. The axis of the collection lens varies along with the variation of the objective lens axis in a coordinated manner. The STEM of the invention exhibits technical merits such as large scanning field, high image resolution across the entire scanning field, and high throughput, among others.
Abstract:
A secondary charged particle imaging system for imaging a secondary charged particle beam emanating from a sample by impingement of a primary charged particle beam is provided. The system includes a detector arrangement, and an adaptive secondary charged particle optics. The detector arrangement comprises a first detection element for detecting a first secondary charged particle sub-beam of the secondary charged particle beam, and a second detection element for detecting a second secondary charged particle sub-beam of the secondary charged particle beam. The adaptive secondary charged particle optics comprises an aperture plate including a first opening for letting the first secondary charged particle sub-beam pass through and a second opening for letting the second secondary charged particle sub-beam pass through; a lens system for mapping the secondary charged particle beam onto the aperture plate, the lens system comprising a first lens and a second lens; and a controller for controlling the excitation of the first lens and the excitation of the second lens. The controller is configured to independently control the excitation of the first lens and of the second lens to map the secondary charged particle beam onto the aperture plate so that the first secondary charged particle sub-beam passes through the first opening and the second secondary charged particle sub-beam passes through the second opening independent of a variation of at least one first operating parameter selected from a group comprising: landing energy of the primary charged particle beam on the sample, extraction field strength for the secondary charged particle beam at the sample, magnetic field strength of an objective lens that focuses the primary charged particle beam onto the sample, and working distance of the objective lens from the sample.
Abstract:
A charged particle beam device for imaging and/or inspecting a sample is described. The charged particle beam device includes a beam emitter for emitting a primary charged particle beam; and a retarding field device for retarding the primary beam before impinging on the sample, the retarding field device including a magnetic-electrostatic objective lens and a proxy electrode. The charged particle beam device is adapted for guiding the primary beam along an optical axis to the sample for generating secondary particles released from the sample and backscattered particles. The proxy electrode comprises a first opening allowing the passage of the primary beam and at least one second opening for allowing the passage of off-axial backscattered particles. Further, a proxy electrode and a method for imaging and/or inspecting a sample by a charged particle beam are described.
Abstract:
The present invention provides an electron beam device that achieves high spatial resolution and high luminance, while remaining insusceptible to the effects of external disturbance. The present invention relates to an electron beam device, wherein, between, e.g., an electron source for generating an electron beam and an objective lens for focusing the electron beam onto a sample, a high voltage beam tube is disposed close to the electron source and a low voltage beam tube is disposed close to the objective lens. This makes it possible to achieve high luminance while maintaining spatial resolution, even with an SEM that is provided with a type of objective lens that actively leaks a magnetic field onto a sample.
Abstract:
An apparatus for the creation of high current ion beams is disclosed. The apparatus includes an ion source, such as a RF ion source or an indirectly heated cathode (IHC) ion source, having an extraction aperture. Disposed proximate the extraction aperture is a bias electrode, which has a hollow center portion that is aligned with the extraction aperture. A magnetic field is created along the perimeter of the hollow center portion, which serves to contain electrons within a confinement region. Electrons in the confinement region energetically collide with neutral particles, increasing the number of ions that are created near the extraction aperture. The magnetic field may be created using two magnets that are embedded in the bias electrode. Alternatively, a single magnet or magnetic coils may be used to create this magnetic field.
Abstract:
The invention relates to a compound objective lens for a Scanning Electron Microscope having a conventional magnetic lens excited by a first lens coil, an immersion magnetic lens excited by a second lens coil, and an immersion electrostatic lens excited by the voltage difference between the sample and the electrostatic lens electrode. For a predetermined excitation of the lens, the electron beam can be focused on the sample using combinations of excitations of the two lens coils. More BSE information can be obtained when the detector distinguishes between BSE's (202) that strike the detector close to the axis and BSE's (204) that strike the detector further removed from the axis. By tuning the ratio of the excitation of the two lens coils, the distance from the axis that the BSE's impinge on the detector can be changed, and the compound lens can be used as an energy selective detector.
Abstract:
A retarding field scanning electron microscope for imaging a specimen is described. The microscope includes a scanning deflection assembly configured for scanning an electron beam over the specimen, one or more controllers in communication with the scanning deflection assembly for controlling a scanning pattern of the electron beam, and a combined magnetic-electrostatic objection lens configured for focusing the electron beam, wherein the objective lens includes a magnetic lens portion and an electrostatic lens portion. The electrostatic lens portion includes an first electrode configured to be biased to a high potential, and a second electrode disposed between the first electrode and the specimen plane, the second electrode being configured to be biased to a potential lower than the first electrode, wherein the second electrode is configured for providing a retarding field of the retarding field scanning electron microscope. The retarding field scanning electron microscope further includes a voltage supply being connected to the second electrode for biasing the second electrode to a potential and being in communication with the one or more controllers, wherein the one or more controllers synchronize a variation of the potential of the second electrode with the scanning pattern of the electron beam.
Abstract:
The present invention relates to a charged particle system comprising: a charged particle source; a first multi aperture plate; a second multi aperture plate disposed downstream of the first multi aperture plate, the second multi aperture plate; a controller configured to selectively apply at least first and second voltage differences between the first and second multi aperture plates; wherein the charged particle source and the first and second multi aperture plates are arranged such that each of a plurality of charged particle beamlets traverses an aperture pair, said aperture pair comprising one aperture of the first multi aperture plate and one aperture of the second multi aperture plate, wherein plural aperture pairs are arranged such that a center of the aperture of the first multi aperture plate is, when seen in a direction of incidence of the charged particle beamlet traversing the aperture of the first multi aperture plate, displaced relative to a center of the aperture of the second multi aperture plate. The invention further pertains to a particle-optical component configured to change a divergence of a set of charged particle beamlets and a charged particle inspection method comprising inspection of an object using different numbers of charged particle beamlets.