摘要:
A silicide-based composite material is disclosed, comprising a silicide of Mo, B, W, Nb, Ta, Ti, Cr, Co, Y, or a combination thereof, Si3N4, and at least an oxide, as well as and a process for producing the same.
摘要:
In the present invention, in producing a SiC single crystal in accordance with a solution method, a crucible containing SiC as a main component and having an oxygen content of 100 ppm or less is used as the crucible to be used as a container for a Si—C solution. In another embodiment, a sintered body containing SiC as a main component and having an oxygen content of 100 ppm or less is placed in the crucible to be used as a container for a Si—C solution. The SiC crucible and SiC sintered body are obtained by molding and baking a SiC raw-material powder having an oxygen content of 2000 ppm or less. SiC, which is the main component of these, serves as a source for Si and C and allows Si and C to elute into the Si—C solution by heating.
摘要:
A method for producing ceramic fibers of a composition in the SiC range, starts from a spinning material that contains a polysilane-polycarbosilane copolymer solution. The spinning material is extruded through spinnerets in a dry spinning method and spun through a spinning duct into green fibers, and the green fibers are subsequently pyrolyzed. Accordingly, the polysilane-polycarbosilane solution contains between 75 wt. % and 95 wt. %, in particular between 80 and 90 wt. %, of an indifferent solvent, and the spinnerets have a capillary diameter between 20 and 70 μm, in particular between 30 and 60 μm, in particular between 40 and 50 μm.
摘要:
A composite material part having a matrix made of ceramic, at least for the most part, is fabricated by a method including making a fiber preform from silicon carbide fibers containing less than 1 at % oxygen; depositing a boron nitride interphase on the fibers of the preform, deposition being performed by chemical vapor infiltration at a deposition rate of less than 0.3 μm/h; performing heat treatment to stabilize the boron nitride of the interphase, after the interphase has been deposited, without prior exposure of the interphase to an oxidizing atmosphere and before depositing matrix layer on the interphase, the heat treatment being performed at a temperature higher than 1300° C. and not less than the maximum temperature to be encountered subsequently until the densification of the preform with the matrix has been completed; and thereafter, densifying the perform with a matrix that is made of ceramic, at least for the most part.
摘要:
Disclosed are: a lanthanum hexaboride sintered body which contains lanthanum hexaboride as the main component, has an element nitrogen content of 0.1 to 3 mass % inclusive, contains an impurity composed of element carbon and/or at least two elements selected from La, C, O and B at a content of 0.3 vol % or less, and has a relative density of 88% or more; and a target comprising the lanthanum hexaboride sintered body. An LaB6 sintered body can be provided, which enables the production of a highly pure and dense LaB6 thin film having excellent crystallinity and a good work function and which is suitable for a sputtering target or the like.
摘要:
Composite material comprising aluminium nitride (AlN) material, less than 80 weight percent cubic boron nitride (cBN) grains dispersed within the AlN material and less that 5 weight percent sinter promotion material, the composite material including no more than about 1.5 percent porosity.
摘要:
A process for producing a bulk highly oriented graphene structure, comprising: (a) preparing a graphene oxide dispersion having graphene oxide (GO) sheets dispersed in a fluid medium; (b) dispensing and depositing the dispersion onto a surface of a supporting substrate to form a layer of GO, wherein the dispensing and depositing procedure includes subjecting the dispersion to an orientation-inducing stress; (c) removing the fluid medium to form a dried layer of GO having an inter-plane spacing d002 of 0.4 nm to 1.2 nm; (d) slicing the dried layer of GO into multiple pieces of dried GO and stacking at least two pieces of dried GO to form a mass of multiple pieces of GO; and (f) heat treating the mass under an optional first compressive stress to produce the highly oriented graphene structure at a first heat treatment temperature higher than 100° C. to an extent that an inter-plane spacing d002 is decreased to a value less than 0.4 nm.
摘要:
A method for preparing a silicon carbide power includes collecting a mixture powder by mixing a carbon source and a silicon source, synthesizing a first silicon carbide powder by heating the mixture powder, forming an agglomerated powder by agglomerating the first silicon carbide powder, and forming a second silicon carbide powder, which has larger particles than the first silicon carbide powder, by heating the agglomerated powder.
摘要:
[Problems]To provide a spherical aluminum nitride powder that features high thermal conductivity and filling property, and that is useful as a filler for a heat radiating material, and a method of producing the same.[Means for Solution]A spherical aluminum nitride powder comprising aluminum nitride particles having an average particle diameter of 3 to 30 μm, a sphericalness of not less than 0.75, and an oxygen content of not more than 1% by weight wherein, when the average particle diameter is d (μm), the specific surface area S (m2/g) satisfies the following formula (1), (1.84/d)≦S≦(1.84/d+0.5) (1).
摘要:
Embodiments of the present invention are directed to nitride-based, red-emitting phosphors in red, green, and blue (RGB) lighting systems, which in turn may be used in backlighting displays and warm white-light applications. In particular embodiments, the red-emitting phosphor is based on CaAlSiN3 type compounds activated with divalent europium. In one embodiment, the nitride-based, red emitting compound contains a solid solution of calcium and strontium compounds (Ca,Sr)AlSiN3:Eu2+, wherein the impurity oxygen content is less than about 2 percent by weight. In another embodiment, the (Ca,Sr)AlSiN3:Eu2+ compounds further contains a halogen in an amount ranging from about zero to about 2 atomic percent, where the halogen may be fluorine (F), chlorine (Cl), or any combination thereof. In one embodiment at least half of the halogen is distributed on 2-fold coordinated nitrogen (N2) sites relative to 3-fold coordinated nitrogen (N3) sites.