一种控制无取向硅钢粗轧板坯翘头生产方法

    公开(公告)号:CN111266416B

    公开(公告)日:2021-08-20

    申请号:CN202010071651.5

    申请日:2020-01-21

    Abstract: 本发明涉及一种控制无取向硅钢粗轧板坯翘头生产方法,1)根据硅钢中的硅、铝元素含量对加热炉各段上、下部位炉温进行分别设定;加热炉各段上部加热温度为T1i=1200*Ni*As;加热炉各段下部加热温度为T2i=1200*Ni*As+ΔTs;2)按照粗轧机各道次入口原料厚度控制每道次压下率为δi=(0.37‑0.0012*Hi)*100%+G;各道次入口原料厚度Hi,第一道次H1为板坯原始厚度,范围为170~230mm,后续各道次Hi的取值分别为前一道次的轧制出口厚度,范围为38~230mm。实施本发明的方案后生产无取向硅钢粗轧翘头缺陷率从27.8%降低到≤1%。

    一种加铌宽带钢薄材稳定轧制的方法

    公开(公告)号:CN110125178B

    公开(公告)日:2020-11-20

    申请号:CN201910400284.6

    申请日:2019-05-15

    Abstract: 一种加铌宽带钢薄材稳定轧制的方法,轧制方法包括:1)均热段时间为35~40分钟,加热炉之间的出炉温度差控制在±30℃;2)粗轧末道次摆动降温,使得粗轧轧出温度RDT控制在目标范围中下限;精轧F4及以后的机架间冷却水不投入,采用精轧机速度保持的方法将FDT控制在875℃‑890℃;3)粗轧来料头部侧弯控制在±30mm以内;4)成品凸度控制:上游机架凸度控制50μm‑60μm。本发明的有益效果是:一种加铌宽带钢薄材稳定轧制的方法,用于生产≤3.0mm的加铌宽带钢,提高加铌宽带钢的轧制成功率,减少顺折、甩尾等生产事故的发生率,提高轧机的作业率进而提高产量,实现利润增长。

    一种在线测量板坯宽度的方法

    公开(公告)号:CN109365547B

    公开(公告)日:2020-06-23

    申请号:CN201811173694.3

    申请日:2018-10-09

    Abstract: 本发明提供一种在线测量板坯宽度的方法,包括压力‑宽度检测方法、位移‑宽度检测方法和板坯宽度超差判断方法。由压力‑宽度检测方法或位移‑宽度检测方法对板坯宽度在线测量,测量的结果通过板坯宽度超差判断方法进行判断。用于在定宽压力机前进行板坯宽度测量,目的是为了降低由于板坯宽度窄尺而造成的宽度封锁率;避免由于板坯宽度超宽而造成的定宽压力机(SP)、E1立辊轧机轧制时事故的发生;防止由于宽度尺寸上的差异上错料而造成的质量事故。

    一种精轧入口导轮的标定方法

    公开(公告)号:CN109365549B

    公开(公告)日:2020-02-18

    申请号:CN201811173706.2

    申请日:2018-10-09

    Abstract: 本发明涉及一种精轧入口导轮的标定方法,1)选择入口导尺外侧为测量位置;2)分别在每架轧机的工作侧和传动侧的轧机入口处,测量靠近导尺传动装置的轧机牌坊内侧到入口导尺外侧的最短距离L1;3)导轮的标定距离采用公式L4=L‑L1‑L2‑L3计算。本发明提高精轧机入口导轮的标定精度,保证精轧的轧制稳定性,标定精度由原来的±5mm提高到现在的±3mm,提高40%。标定人员站位的安全系数大幅度提升,减轻了操作人员的工作负荷。缩短30%标定时间。

    一种精轧入口导轮的标定方法

    公开(公告)号:CN109365549A

    公开(公告)日:2019-02-22

    申请号:CN201811173706.2

    申请日:2018-10-09

    Abstract: 本发明涉及一种精轧入口导轮的标定方法,1)选择入口导尺外侧为测量位置;2)分别在每架轧机的工作侧和传动侧的轧机入口处,测量靠近导尺传动装置的轧机牌坊内侧到入口导尺外侧的最短距离L1;3)导轮的标定距离采用公式L4=L-L1-L2-L3计算。本发明提高精轧机入口导轮的标定精度,保证精轧的轧制稳定性,标定精度由原来的±5mm提高到现在的±3mm,提高40%。标定人员站位的安全系数大幅度提升,减轻了操作人员的工作负荷。缩短30%标定时间。

    一种高精度含硼钢热轧轧制力计算方法

    公开(公告)号:CN105855298B

    公开(公告)日:2017-09-12

    申请号:CN201510034250.1

    申请日:2015-01-23

    Abstract: 本发明涉及一种高精度含硼钢热轧轧制力计算方法,通过不同钢种、宽度、厚度层别划分后,在原有程序计算化学成分影响系数基础上增加CoefKm[iFmStand][7]×fCc_B影响系数数据项参与计算,在计算变形抗力基础上增加B含量影响系数CoefB_N[i][j]值参与计算,得出fKm=fCoeffCc×fCon×fFun(fCc_C,T,fEp,fEpV)×{CoefB_N[i][j]};本发明的优点是:有效地提高了终轧厚度精度,2013年含硼带钢厚度精度由93.2%提高到99.0%;提高了轧制稳定性,产量得到了较大的提升。

    一种高精度含硼钢热轧轧制力计算方法

    公开(公告)号:CN105855298A

    公开(公告)日:2016-08-17

    申请号:CN201510034250.1

    申请日:2015-01-23

    Abstract: 本发明涉及一种高精度含硼钢热轧轧制力计算方法,通过不同钢种、宽度、厚度层别划分后,在原有程序计算化学成分影响系数基础上增加CoefKm[iFmStand][7]×fCc_B影响系数数据项参与计算,在计算变形抗力基础上增加B含量影响系数CoefB_N[i][j]值参与计算,得出fKm=fCoeffCc×fCon×fFun(fCc_C,T,fEp,fEpV)×{CoefB_N[i][j]};本发明的优点是:有效地提高了终轧厚度精度,2013年含硼带钢厚度精度由93.2%提高到99.0%;提高了轧制稳定性,产量得到了较大的提升。

    一种硬质超低碳钢生产方法

    公开(公告)号:CN105506437A

    公开(公告)日:2016-04-20

    申请号:CN201410505148.0

    申请日:2014-09-25

    Abstract: 本发明涉及一种硬质超低碳钢生产方法,具体包括以下工艺步骤:轧制过程中,精轧入口温度控制在1050℃~1075℃;当热轧成品厚度为2.5mm~3.5mm的IF钢,中间坯厚度控制在38mm~42mm;冷轧过程中,退火炉辐射加热段温度RTF控制范围大致为760℃~790℃,无氧化段温度NOF为600℃~660℃。本发明的优点是:通过本发明,开发了超低碳新钢种,该钢种不仅满足了延伸率达到40%的要求,屈服强度也稳定达到240MPa,并且在烘烤加工后未出现明显的屈服平台,产品满足了超低碳钢的质量要求。

Patent Agency Ranking