-
公开(公告)号:CN114358266B
公开(公告)日:2024-12-10
申请号:CN202111683726.6
申请日:2021-12-28
Applicant: 北京航天自动控制研究所
IPC: G06N3/063 , G06N3/0464
Abstract: 本发明涉及一种数据流驱动的卷积神经网络加速器,包括:预处理模块、卷积模块、池化模块和指令分发模块;预处理模块用于加载输入特征执行卷积神经网络的预处理;卷积模块用于加载权重、偏置数据以及输入特征执行卷积层、全连接层或非线性激活层的计算;池化模块用于加载卷积模块的计算结果执行池化层的计算输出;指令分发模块用于对所述预处理模块、卷积模块和池化模块进行工作模式的配置和控制;在指令分发模块的工作模式配置和控制下,根据卷积神经网络结构,将预处理模块、卷积模块和池化模块进行动态的流式结构连接;实现对输入数据的卷积神经网络加速处理。本发明提高CNN加速器的可扩展性,提升系统的整体性能。
-
公开(公告)号:CN110309537B
公开(公告)日:2023-06-20
申请号:CN201910440246.3
申请日:2019-05-24
Applicant: 北京航天自动控制研究所 , 中国运载火箭技术研究院
Inventor: 张英 , 王世会 , 赵雄波 , 郭波涛 , 郭城 , 宋鹏飞 , 王栋 , 成锐 , 聂振斌 , 陈闯 , 温亚 , 杨喆 , 张福鑫 , 杨诚 , 仲雪洁 , 韦闽峰 , 王婧 , 蔡燕斌 , 李晓敏 , 高梓晰 , 张萌 , 窦志红 , 吴强 , 王大庆 , 李宾 , 康旭冰 , 周华 , 冯丽 , 田长铮 , 野超 , 高晓颖 , 曹健 , 张兴
IPC: G06F30/20 , G06N3/08 , G06Q10/04 , G06Q10/0639 , G06F17/11
Abstract: 一种飞行器的智能健康预测方法及系统,用于飞行器实时控制健康预测,是一种实时在线健康预测算法。该方法改变了传统飞行器事后补救的健康处置方案,采用实时输出飞行器的健康预测值。包括五个模型:飞行器数据模拟模型、基于RNN和LSTM的数据集正样本训练预测模型、基于灰色模型的预测模型、组合预测模型、健康度计算模型。
-
公开(公告)号:CN115905363A
公开(公告)日:2023-04-04
申请号:CN202211555122.8
申请日:2022-12-05
Applicant: 北京航天自动控制研究所
Inventor: 周辉 , 谢宇嘉 , 王晓峰 , 李悦 , 赵雄波 , 吴松龄 , 盖一帆 , 路坤峰 , 李晓敏 , 张隽 , 弭寒光 , 董文杰 , 靳蕊溪 , 吴敏 , 赵冠杰 , 阳徽 , 费亚男 , 赵伟
IPC: G06F16/2458 , G06F16/2455 , G06F16/248
Abstract: 本发明涉及一种数据的实时排序系统,其包括控制单元,输入数据预处理单元,排序模块以及数据缓存与输出单元,所述控制单元用于实现所述输入数据预处理单元和排序模块的控制,所述输入数据预处理单元用于确定所述排序模块是否能够接收新的外部数据并用于判定是否将序列数据输入所述排序模块,所述排序模块用于对输入其内的序列数据进行排序,所述数据缓存与输出单元用于对排序后的数据进行信息缓存和输出。其降低了输入数据从外部存储器读取的次数,降低了数据通讯量与数据存取开销,以尽可能小的FPGA资源消耗量,支持任意规模的数据排序操作,大幅压缩了排序运算的耗时,从而降低了排序操作的运算成本并提升了其效率。
-
公开(公告)号:CN110297423B
公开(公告)日:2022-08-12
申请号:CN201910447804.9
申请日:2019-05-27
Applicant: 北京航天自动控制研究所 , 中国运载火箭技术研究院
Inventor: 张英 , 王世会 , 赵雄波 , 郭波涛 , 李悦 , 呼吁 , 许琦 , 王琦 , 韩利军 , 杨广慧 , 陈伟 , 韦闽峰 , 宋鹏飞 , 王栋 , 成锐 , 张昕 , 周辉 , 秦东辉 , 汪冬瑾 , 江存胜 , 刘建敬 , 马征 , 赵星宇 , 孙德胜 , 杨俊峰 , 陈红岩 , 包亮 , 傅绍文 , 马力伟 , 王嘉贤 , 曹健 , 张兴
IPC: G05B13/04
Abstract: 本发明公开了一种飞行器长期在轨多模智能集成系统,包括:传感器模块、控制模块和执行模块;其中,所述传感器模块用于向控所述制模块实时输入飞行器敏感的飞行数据,其中,该数据包括可供飞行器控制直接使用的具有历史相关性的多维结构化浮点数据和相对应的传感器模块的物理表征量;所述控制模块接收飞行器敏感的飞行数据,并根据飞行器敏感的飞行数据处理得到状态数据和动作数据,并将状态数据和动作数据传输给所述执行模块;所述执行模块根据状态数据和动作数据输出运行指令,实现飞行器控制。本发明通过对飞行器长期在轨多模式状态智能控制,可动态的采取相应措施,确保系统正常运行。
-
公开(公告)号:CN114330658A
公开(公告)日:2022-04-12
申请号:CN202111630592.1
申请日:2021-12-28
Applicant: 北京航天自动控制研究所
Abstract: 本发明涉及一种动态可重构的卷积神经网络多核加速器,包括指令分发模块和与其连接、受其控制的加载模块、路由模块、计算模块和卸载模块;加载模块从外部加载输入特征数据和卷积核数据;路由模块将加载的数据分配给计算模块进行卷积神经网络加速处理;计算模块将结果通过卸载模块输出;加载模块、路由模块、计算模块和卸载模块中包括多路的加载器、路由器、计算核心和卸载器;在卷积神经网络处理过程中,指令分发模块对多路加载器、路由器、计算核心和卸载器进行分组动态重构,在计算核心中加载特征数据和卷积核数据,执行并行卷积神经网络加速处理。本发明利用动态重构实现多个计算核心间的并行,提高卷积神经网络的大动态适应能力。
-
公开(公告)号:CN114327629A
公开(公告)日:2022-04-12
申请号:CN202111682235.X
申请日:2021-12-28
Applicant: 北京航天自动控制研究所
Abstract: 本发明涉及一种基于FPGA的二维多通道卷积硬件加速器,包括:控制单元、偏置缓存、权重缓存、输入特征缓存、卷积缓存、权重预读寄存器组、PE阵列、非线性单元、第二选通器和第三选通器;特征缓存连接PE阵列;权重缓存通过权重预读寄存器组连接PE阵列;偏置缓存与卷积缓存通过第三选通器连接PE阵列,PE阵列输出端通过第二选通器连接卷积缓存和非线性单元;输入特征缓存、偏置缓存和权重缓存加载数据;权重预读寄存器组对权重缓存进行预读寄存;PE阵列写入输入特征、预读寄存的权重数据,偏置数据或卷积中间结果进行卷积运算,将卷积中间结果写入卷积缓存,将卷积最终结果经非线性单元激活后输出。本发明实现对CNN中任意规模卷积层的高效计算。
-
公开(公告)号:CN104657553B
公开(公告)日:2018-03-09
申请号:CN201510070071.3
申请日:2015-02-10
Applicant: 北京航天自动控制研究所 , 中国运载火箭技术研究院
IPC: G06F17/50
Abstract: 一种基于快速归一化互相关法的相似性测度硬件加速方法,首先建立实时图与模板图之间相关系数的数学模型;然后利用两层流水线进行硬件算法的设计,并利用有限状态机方法计算搜索窗口选定的实时图与模板图之间的相关系数;在所有搜索窗口选定的实时图与模板图之间的相关系数计算完成后,找出相关系数中的最大值和对应搜索窗口左上角在实时图坐标系中的横坐标和纵坐标,该搜索窗口对应的选定区域即为匹配区域,本发明合理控制硬件资源代价,在Xilinx Virtex5‑XC5VFX100T下满足达到100M的要求,对大小为80*64的实时图和大小为25*25的模板图进行相似性匹配运算只需3.5ms,极大的提高了算法速度。
-
公开(公告)号:CN114327629B
公开(公告)日:2025-03-14
申请号:CN202111682235.X
申请日:2021-12-28
Applicant: 北京航天自动控制研究所
IPC: G06F9/30 , G06F7/501 , G06F7/523 , G06N3/0464 , G06N3/063
Abstract: 本发明涉及一种基于FPGA的二维多通道卷积硬件加速器,包括:控制单元、偏置缓存、权重缓存、输入特征缓存、卷积缓存、权重预读寄存器组、PE阵列、非线性单元、第二选通器和第三选通器;特征缓存连接PE阵列;权重缓存通过权重预读寄存器组连接PE阵列;偏置缓存与卷积缓存通过第三选通器连接PE阵列,PE阵列输出端通过第二选通器连接卷积缓存和非线性单元;输入特征缓存、偏置缓存和权重缓存加载数据;权重预读寄存器组对权重缓存进行预读寄存;PE阵列写入输入特征、预读寄存的权重数据,偏置数据或卷积中间结果进行卷积运算,将卷积中间结果写入卷积缓存,将卷积最终结果经非线性单元激活后输出。本发明实现对CNN中任意规模卷积层的高效计算。
-
公开(公告)号:CN115936067A
公开(公告)日:2023-04-07
申请号:CN202211539305.0
申请日:2022-12-01
Applicant: 北京航天自动控制研究所
Inventor: 谢宇嘉 , 王晓峰 , 李悦 , 周辉 , 赵雄波 , 张辉 , 吴松龄 , 李晓敏 , 杨钧宇 , 路坤峰 , 张隽 , 丛龙剑 , 盖一帆 , 李山山 , 吴敏 , 林玉野 , 靳蕊溪
IPC: G06N3/0464 , G06N3/048 , G06N3/084
Abstract: 本公开涉及一种具有ECA通道注意力机制的神经网络,所述神经网络包括ECA通道注意力装置,所述ECA通道注意力装置包括:第一层级量化单元,对所述所输入数据进行层级量化,将浮点数输入数据转化为定点数输入数据;在所述第一层级量化模块中,整个输入张量共用一个量化步长和量化零点;通道级量化单元,对所述激活层的输出进行层级量化,所述通道级量化模块对每一个通道都单独计算一个量化步长和量化零点;通道乘法加权模块,所述第一层级量化输出数据与所述通道级量化输出数据进行通道加权乘法计算。本公开通过将一维卷积层级的结果进行无损精度输出,将激活层模块沿通道方向进行量化,其他数据使用层级量化操作的方案解决模型精度下降的问题。
-
公开(公告)号:CN115809024A
公开(公告)日:2023-03-17
申请号:CN202211586179.4
申请日:2022-12-10
Applicant: 北京航天自动控制研究所
Inventor: 王晓峰 , 赵雄波 , 周辉 , 盖一帆 , 蒋彭龙 , 路坤锋 , 李晓敏 , 李超然 , 谢宇嘉 , 黄鹂 , 林平 , 董文杰 , 吴松龄 , 弥寒光 , 吴敏 , 赵冠杰 , 徐天运 , 李杨珺 , 李杰 , 杨庆军 , 靳蕊溪 , 林玉野 , 王森
Abstract: 本公开属于神经网络存储技术领域,涉及一种基于Winograd的相关算法加速器存储方法,包括S1获取相关结果矩阵块和实时图矩阵块的大小,获取相关结果矩阵和实时图张量的大小和加速单元的通道并行度;S2由片外存储向基准张量第一区域存储基准图张量块;S3由片外存储向实时张量缓存实时图张量块;S4由基准图张量缓存中的第一区域读取数据,将读取的最后两行数据写入基准图张量缓存中的第二区域的前两行;S5由基准张量缓存中读张量块并预写入基准张量寄存器组;S6由实时图张量缓存向实时图张量图寄存器写入张量块;S7将基准寄存器组的前列数据搬移到后列,同时将基准张量缓存中读取数据到寄存器组前列;S8在不同的寄存器组之间处理和计算后写入张量寄存器组。
-
-
-
-
-
-
-
-
-