-
公开(公告)号:CN114358266B
公开(公告)日:2024-12-10
申请号:CN202111683726.6
申请日:2021-12-28
Applicant: 北京航天自动控制研究所
IPC: G06N3/063 , G06N3/0464
Abstract: 本发明涉及一种数据流驱动的卷积神经网络加速器,包括:预处理模块、卷积模块、池化模块和指令分发模块;预处理模块用于加载输入特征执行卷积神经网络的预处理;卷积模块用于加载权重、偏置数据以及输入特征执行卷积层、全连接层或非线性激活层的计算;池化模块用于加载卷积模块的计算结果执行池化层的计算输出;指令分发模块用于对所述预处理模块、卷积模块和池化模块进行工作模式的配置和控制;在指令分发模块的工作模式配置和控制下,根据卷积神经网络结构,将预处理模块、卷积模块和池化模块进行动态的流式结构连接;实现对输入数据的卷积神经网络加速处理。本发明提高CNN加速器的可扩展性,提升系统的整体性能。
-
公开(公告)号:CN115905363A
公开(公告)日:2023-04-04
申请号:CN202211555122.8
申请日:2022-12-05
Applicant: 北京航天自动控制研究所
Inventor: 周辉 , 谢宇嘉 , 王晓峰 , 李悦 , 赵雄波 , 吴松龄 , 盖一帆 , 路坤峰 , 李晓敏 , 张隽 , 弭寒光 , 董文杰 , 靳蕊溪 , 吴敏 , 赵冠杰 , 阳徽 , 费亚男 , 赵伟
IPC: G06F16/2458 , G06F16/2455 , G06F16/248
Abstract: 本发明涉及一种数据的实时排序系统,其包括控制单元,输入数据预处理单元,排序模块以及数据缓存与输出单元,所述控制单元用于实现所述输入数据预处理单元和排序模块的控制,所述输入数据预处理单元用于确定所述排序模块是否能够接收新的外部数据并用于判定是否将序列数据输入所述排序模块,所述排序模块用于对输入其内的序列数据进行排序,所述数据缓存与输出单元用于对排序后的数据进行信息缓存和输出。其降低了输入数据从外部存储器读取的次数,降低了数据通讯量与数据存取开销,以尽可能小的FPGA资源消耗量,支持任意规模的数据排序操作,大幅压缩了排序运算的耗时,从而降低了排序操作的运算成本并提升了其效率。
-
公开(公告)号:CN114327629A
公开(公告)日:2022-04-12
申请号:CN202111682235.X
申请日:2021-12-28
Applicant: 北京航天自动控制研究所
Abstract: 本发明涉及一种基于FPGA的二维多通道卷积硬件加速器,包括:控制单元、偏置缓存、权重缓存、输入特征缓存、卷积缓存、权重预读寄存器组、PE阵列、非线性单元、第二选通器和第三选通器;特征缓存连接PE阵列;权重缓存通过权重预读寄存器组连接PE阵列;偏置缓存与卷积缓存通过第三选通器连接PE阵列,PE阵列输出端通过第二选通器连接卷积缓存和非线性单元;输入特征缓存、偏置缓存和权重缓存加载数据;权重预读寄存器组对权重缓存进行预读寄存;PE阵列写入输入特征、预读寄存的权重数据,偏置数据或卷积中间结果进行卷积运算,将卷积中间结果写入卷积缓存,将卷积最终结果经非线性单元激活后输出。本发明实现对CNN中任意规模卷积层的高效计算。
-
公开(公告)号:CN104657553B
公开(公告)日:2018-03-09
申请号:CN201510070071.3
申请日:2015-02-10
Applicant: 北京航天自动控制研究所 , 中国运载火箭技术研究院
IPC: G06F17/50
Abstract: 一种基于快速归一化互相关法的相似性测度硬件加速方法,首先建立实时图与模板图之间相关系数的数学模型;然后利用两层流水线进行硬件算法的设计,并利用有限状态机方法计算搜索窗口选定的实时图与模板图之间的相关系数;在所有搜索窗口选定的实时图与模板图之间的相关系数计算完成后,找出相关系数中的最大值和对应搜索窗口左上角在实时图坐标系中的横坐标和纵坐标,该搜索窗口对应的选定区域即为匹配区域,本发明合理控制硬件资源代价,在Xilinx Virtex5‑XC5VFX100T下满足达到100M的要求,对大小为80*64的实时图和大小为25*25的模板图进行相似性匹配运算只需3.5ms,极大的提高了算法速度。
-
公开(公告)号:CN114327629B
公开(公告)日:2025-03-14
申请号:CN202111682235.X
申请日:2021-12-28
Applicant: 北京航天自动控制研究所
IPC: G06F9/30 , G06F7/501 , G06F7/523 , G06N3/0464 , G06N3/063
Abstract: 本发明涉及一种基于FPGA的二维多通道卷积硬件加速器,包括:控制单元、偏置缓存、权重缓存、输入特征缓存、卷积缓存、权重预读寄存器组、PE阵列、非线性单元、第二选通器和第三选通器;特征缓存连接PE阵列;权重缓存通过权重预读寄存器组连接PE阵列;偏置缓存与卷积缓存通过第三选通器连接PE阵列,PE阵列输出端通过第二选通器连接卷积缓存和非线性单元;输入特征缓存、偏置缓存和权重缓存加载数据;权重预读寄存器组对权重缓存进行预读寄存;PE阵列写入输入特征、预读寄存的权重数据,偏置数据或卷积中间结果进行卷积运算,将卷积中间结果写入卷积缓存,将卷积最终结果经非线性单元激活后输出。本发明实现对CNN中任意规模卷积层的高效计算。
-
公开(公告)号:CN115936067A
公开(公告)日:2023-04-07
申请号:CN202211539305.0
申请日:2022-12-01
Applicant: 北京航天自动控制研究所
Inventor: 谢宇嘉 , 王晓峰 , 李悦 , 周辉 , 赵雄波 , 张辉 , 吴松龄 , 李晓敏 , 杨钧宇 , 路坤峰 , 张隽 , 丛龙剑 , 盖一帆 , 李山山 , 吴敏 , 林玉野 , 靳蕊溪
IPC: G06N3/0464 , G06N3/048 , G06N3/084
Abstract: 本公开涉及一种具有ECA通道注意力机制的神经网络,所述神经网络包括ECA通道注意力装置,所述ECA通道注意力装置包括:第一层级量化单元,对所述所输入数据进行层级量化,将浮点数输入数据转化为定点数输入数据;在所述第一层级量化模块中,整个输入张量共用一个量化步长和量化零点;通道级量化单元,对所述激活层的输出进行层级量化,所述通道级量化模块对每一个通道都单独计算一个量化步长和量化零点;通道乘法加权模块,所述第一层级量化输出数据与所述通道级量化输出数据进行通道加权乘法计算。本公开通过将一维卷积层级的结果进行无损精度输出,将激活层模块沿通道方向进行量化,其他数据使用层级量化操作的方案解决模型精度下降的问题。
-
公开(公告)号:CN115809024A
公开(公告)日:2023-03-17
申请号:CN202211586179.4
申请日:2022-12-10
Applicant: 北京航天自动控制研究所
Inventor: 王晓峰 , 赵雄波 , 周辉 , 盖一帆 , 蒋彭龙 , 路坤锋 , 李晓敏 , 李超然 , 谢宇嘉 , 黄鹂 , 林平 , 董文杰 , 吴松龄 , 弥寒光 , 吴敏 , 赵冠杰 , 徐天运 , 李杨珺 , 李杰 , 杨庆军 , 靳蕊溪 , 林玉野 , 王森
Abstract: 本公开属于神经网络存储技术领域,涉及一种基于Winograd的相关算法加速器存储方法,包括S1获取相关结果矩阵块和实时图矩阵块的大小,获取相关结果矩阵和实时图张量的大小和加速单元的通道并行度;S2由片外存储向基准张量第一区域存储基准图张量块;S3由片外存储向实时张量缓存实时图张量块;S4由基准图张量缓存中的第一区域读取数据,将读取的最后两行数据写入基准图张量缓存中的第二区域的前两行;S5由基准张量缓存中读张量块并预写入基准张量寄存器组;S6由实时图张量缓存向实时图张量图寄存器写入张量块;S7将基准寄存器组的前列数据搬移到后列,同时将基准张量缓存中读取数据到寄存器组前列;S8在不同的寄存器组之间处理和计算后写入张量寄存器组。
-
公开(公告)号:CN115731094A
公开(公告)日:2023-03-03
申请号:CN202211585037.6
申请日:2022-12-10
Applicant: 北京航天自动控制研究所
Inventor: 王晓峰 , 蒋彭龙 , 周辉 , 谢宇嘉 , 赵雄波 , 盖一帆 , 路坤锋 , 李晓敏 , 李超然 , 弥寒光 , 林平 , 董文杰 , 吴松龄 , 黄鹂 , 吴敏 , 赵冠杰 , 杨庆军 , 李杨珺 , 王森 , 李杰 , 林玉野 , 靳蕊溪
IPC: G06T1/60
Abstract: 本公开属于算法硬件电路设计技术领域,具体而言涉及一种基于Winograd的相关算法加速器存储系统,包括:片外存储;片上张量缓存,与片外存储相连,所述片上张量缓存包括基准张量缓存、实时张量缓存以及过程张量缓存,其中基准张量缓存基于所述加速器的数据重用缓存计算所需的基准图张量块,实时张量缓存基于所述加速器的数据重用缓存计算所需的实时图张量块,过程张量缓存基于所述加速器的数据重用缓存当前计算产生的中间结果数据;和多个寄存器,与片上张量缓存相连,接收和/或输送基准图和/或实时图的处理数据。本公开满足计算单元高吞吐量的数据需求,还能利用尽可能少的片上资源,实现高数据复用率,降低加速器对片外存储带宽的需求。
-
公开(公告)号:CN110135561B
公开(公告)日:2021-06-11
申请号:CN201910357020.7
申请日:2019-04-29
Applicant: 北京航天自动控制研究所 , 中国运载火箭技术研究院
Inventor: 张英 , 王世会 , 韦闽峰 , 王嘉贤 , 高晓颖 , 赵雄波 , 杨喆 , 郑文娟 , 陈伟 , 周辉 , 吴松龄 , 秦东辉 , 李毅 , 郭城 , 王婧 , 曹健 , 张兴 , 张继生 , 蔡燕斌 , 汪冬瑾 , 江存胜 , 刘建敬 , 赵一飞 , 戚红向 , 马征 , 赵星宇 , 孙德胜 , 杨俊峰 , 司文杰 , 黄如意 , 呼吁 , 王琦 , 陈红岩 , 周华 , 韩利军 , 杨广慧 , 冯丽 , 许琦 , 李悦 , 张辉 , 李晓东 , 李德强 , 野超
IPC: G06N3/04
Abstract: 一种实时在线飞行器AI神经网络系统,包括卷积定点滑动IP核、池化压缩量化IP核以及全连接压缩融合IP核。共i+1层,每个卷积定点滑动窗口IP核和池化压缩量化核结构相同。其中,传感器信号1为对于飞行器优先级最高的主惯导数据,它单独输入一个单元网络层在第二次卷积时需控制1至i+1层的输入。飞行器异构传感器数据,作为系统的输入;辨识结果作为系统的输出。卷积滑动窗口IP核,通过排除冗余数据的滑动窗快速实现数据特征的提取;池化压缩量化IP核,使用压缩量化技术,提高系统执行效率;全连接压缩融合IP核,经删减量化后压缩融合,输出满足飞行器实时飞行过程中对大量异构输入数据的高可靠性、低功耗智能集成处理需求。
-
公开(公告)号:CN110135561A
公开(公告)日:2019-08-16
申请号:CN201910357020.7
申请日:2019-04-29
Applicant: 北京航天自动控制研究所 , 中国运载火箭技术研究院
Inventor: 张英 , 王世会 , 韦闽峰 , 王嘉贤 , 高晓颖 , 赵雄波 , 杨喆 , 郑文娟 , 陈伟 , 周辉 , 吴松龄 , 秦东辉 , 李毅 , 郭城 , 王婧 , 曹健 , 张兴 , 张继生 , 蔡燕斌 , 汪冬瑾 , 江存胜 , 刘建敬 , 赵一飞 , 戚红向 , 马征 , 赵星宇 , 孙德胜 , 杨俊峰 , 司文杰 , 黄如意 , 呼吁 , 王琦 , 陈红岩 , 周华 , 韩利军 , 杨广慧 , 冯丽 , 许琦 , 李悦 , 张辉 , 李晓东 , 李德强 , 野超
IPC: G06N3/04
Abstract: 一种实时在线飞行器AI神经网络系统,包括卷积定点滑动IP核、池化压缩量化IP核以及全连接压缩融合IP核。共i+1层,每个卷积定点滑动窗口IP核和池化压缩量化核结构相同。其中,传感器信号1为对于飞行器优先级最高的主惯导数据,它单独输入一个单元网络层在第二次卷积时需控制1至i+1层的输入。飞行器异构传感器数据,作为系统的输入;辨识结果作为系统的输出。卷积滑动窗口IP核,通过排除冗余数据的滑动窗快速实现数据特征的提取;池化压缩量化IP核,使用压缩量化技术,提高系统执行效率;全连接压缩融合IP核,经删减量化后压缩融合,输出满足飞行器实时飞行过程中对大量异构输入数据的高可靠性、低功耗智能集成处理需求。
-
-
-
-
-
-
-
-
-