-
公开(公告)号:CN114358266A
公开(公告)日:2022-04-15
申请号:CN202111683726.6
申请日:2021-12-28
Applicant: 北京航天自动控制研究所
Abstract: 本发明涉及一种数据流驱动的卷积神经网络加速器,包括:预处理模块、卷积模块、池化模块和指令分发模块;预处理模块用于加载输入特征执行卷积神经网络的预处理;卷积模块用于加载权重、偏置数据以及输入特征执行卷积层、全连接层或非线性激活层的计算;池化模块用于加载卷积模块的计算结果执行池化层的计算输出;指令分发模块用于对所述预处理模块、卷积模块和池化模块进行工作模式的配置和控制;在指令分发模块的工作模式配置和控制下,根据卷积神经网络结构,将预处理模块、卷积模块和池化模块进行动态的流式结构连接;实现对输入数据的卷积神经网络加速处理。本发明提高CNN加速器的可扩展性,提升系统的整体性能。
-
-
公开(公告)号:CN110963409A
公开(公告)日:2020-04-07
申请号:CN201911206715.1
申请日:2019-11-29
Applicant: 北京航天自动控制研究所
Inventor: 张伯川 , 唐波 , 刘燕欣 , 高仕博 , 张聪 , 肖利平 , 胡瑞光 , 闫涛 , 徐安盛 , 闫威 , 李飞 , 王硕 , 张海荣 , 朱泽林 , 苏晓静 , 魏小丹 , 刘国明 , 李宇明 , 熊寸平
Abstract: 本发明涉及一种轮胎吊机器视觉自动纠偏偏差测量方法,通过下述方式实现:在轮胎吊陆侧两个轮组前方安装左右探测器,满足探测器成像中路面两条行进线的像素分辨率优于2毫米;对左右探测器进行标定,确定探测器图像中像素坐标与其对应的地面测量坐标系位置关系;所述的地面测量坐标系原点为左/探测器底面投影点,Y轴为探测器的视场中心线在地面投影,X轴为地面与Y轴垂直方向,定义趋向陆地的位置偏差为正;根据轮胎吊的当前行驶方向,从探测器图像中的路面行进线上任意选取两点,根据上述标定关系,由两点确定的直线与地面测量坐标系的关系确定轮胎吊当前位置偏差和角度偏差。
-
公开(公告)号:CN115063655B
公开(公告)日:2025-01-07
申请号:CN202111655904.4
申请日:2021-12-30
Applicant: 北京航天自动控制研究所
IPC: G06V10/80 , G06V10/774 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明涉及一种融合超列的类激活映射图生成方法,第一步:根据过滤器通道将网络卷积层分为低、中、高区域,并提取每个区域最后一个卷积块作为低、中、高区域三个不同层次的信息;第二步:对d1、d2两个层次的输出特征进行上采样,使其成为低层次的特征维度,然后进行深度拼接,得到特征图,并进行标准化,使其包含的元素范围在[0,1]之间;第三步:将第二步中得到的特征图进行分组批处理,每组特征图采用置信度算法得到每组特征图的置信度;第四步:将所有组的置信度结果进行拼接,得到一个多维向量,对该向量进行软最大(softmax())处理,将结果作为每个特征图的贡献度;第五步:将贡献度与对应的特征图相乘,并将相乘后的特征图相加,获得最终的类激活图。
-
公开(公告)号:CN112803918B
公开(公告)日:2024-12-13
申请号:CN202011539234.5
申请日:2020-12-23
Applicant: 北京航天自动控制研究所
IPC: H03H21/00
Abstract: 本发明涉及一种基于高精度控制系统的LMS自适应滤波器设计方法,属于数字信号处理领域;步骤一、设置LMS自适应滤波器的性能指标;步骤二、根据步骤一的性能指标,设置LMS自适应滤波器的选取采样率;步骤三、根据步骤一的性能指标,设置LMS自适应滤波器的权值更新步长μ;步骤四、优化LMS自适应滤波器的期望信号d(n);根据期望信号d(n)设置采样点数Δ;步骤五、设置LMS自适应滤波器的阶数M;完成LMS自适应滤波器的设计;本发明兼顾了动静态性能要求,适用于高精度大动态控制系统,具有结构简单、工程实现方便等优点。
-
公开(公告)号:CN114326813B
公开(公告)日:2023-06-20
申请号:CN202111672205.0
申请日:2021-12-31
Applicant: 北京航天自动控制研究所
IPC: G05D1/10
Abstract: 一种无动力飞行器的剩余飞行时间预测方法和系统,方法包括获取当前时刻飞行器的目标距离、视线倾角、视线偏角和速度矢量,计算总前置角,根据总前置角判断当前飞行为转弯飞行或直线飞行;若为转弯飞行,则根据总前置角进行分段,最后一段为直线段其余段为转弯段,采用分段迭代预测转弯段剩余飞行时间;计算剩余直线段航程,根据剩余直线段航程对直线段进行分段,采用分段迭代预测直线段剩余飞行时间;转弯段剩余飞行时间与直线段剩余飞行时间的和为预测的总剩余飞行时间;若为直线飞行,计算剩余直线段航程,根据剩余直线段航程对直线段进行分段,采用分段迭代预测直线段剩余飞行时间,直线段剩余飞行时间为预测的总剩余飞行时间。
-
公开(公告)号:CN111017727A
公开(公告)日:2020-04-17
申请号:CN201911204265.2
申请日:2019-11-29
Applicant: 北京航天自动控制研究所
Inventor: 张伯川 , 唐波 , 刘燕欣 , 高仕博 , 张聪 , 肖利平 , 郑智辉 , 邵学辉 , 龚任杰 , 郭宸瑞 , 李钊 , 赵玲 , 苏晓静 , 朱泽林 , 司文杰 , 杨庆军 , 聂鹏 , 刘国明
Abstract: 本发明涉及一种轮胎吊自动纠偏控制停机判断方法,通过下述方式实现:根据轮胎吊行进时的车轮与地面安全区域和危险区域的关系,确定出轮胎吊行进时角度最大偏差Δαmax及制动期间轮胎吊位置偏差最大值D制动max;根据轮胎吊行进时角度最大偏差确定图像处理延时对轮胎吊行进位置偏差影响,确定影响距离Ddelay;根据制动期间轮胎吊位置偏差最大值及影响距离,确定轮胎吊制动保护距离阈值YZ;根据轮胎吊运动轨迹的解析表达式,根据给定的位置偏差,结合两种探测器可能的角度偏差,使用K-S检测方法确定轮胎吊行进实际轨迹;根据实际轨迹确定轮胎吊行进过程中的最大偏差,根据该最大偏差与轮胎吊制动保护距离阈值的关系结合行进过程中的车速确定轮胎吊是否停机。
-
公开(公告)号:CN114358266B
公开(公告)日:2024-12-10
申请号:CN202111683726.6
申请日:2021-12-28
Applicant: 北京航天自动控制研究所
IPC: G06N3/063 , G06N3/0464
Abstract: 本发明涉及一种数据流驱动的卷积神经网络加速器,包括:预处理模块、卷积模块、池化模块和指令分发模块;预处理模块用于加载输入特征执行卷积神经网络的预处理;卷积模块用于加载权重、偏置数据以及输入特征执行卷积层、全连接层或非线性激活层的计算;池化模块用于加载卷积模块的计算结果执行池化层的计算输出;指令分发模块用于对所述预处理模块、卷积模块和池化模块进行工作模式的配置和控制;在指令分发模块的工作模式配置和控制下,根据卷积神经网络结构,将预处理模块、卷积模块和池化模块进行动态的流式结构连接;实现对输入数据的卷积神经网络加速处理。本发明提高CNN加速器的可扩展性,提升系统的整体性能。
-
公开(公告)号:CN115063655A
公开(公告)日:2022-09-16
申请号:CN202111655904.4
申请日:2021-12-30
Applicant: 北京航天自动控制研究所
IPC: G06V10/80 , G06V10/774 , G06V10/764 , G06V10/82 , G06N3/04 , G06N3/08
Abstract: 本发明涉及一种融合超列的类激活映射图生成方法,第一步:根据过滤器通道将网络卷积层分为低、中、高区域,并提取每个区域最后一个卷积块作为低、中、高区域三个不同层次的信息;第二步:对d1、d2两个层次的输出特征进行上采样,使其成为低层次的特征维度,然后进行深度拼接,得到特征图,并进行标准化,使其包含的元素范围在[0,1]之间;第三步:将第二步中得到的特征图进行分组批处理,每组特征图采用置信度算法得到每组特征图的置信度;第四步:将所有组的置信度结果进行拼接,得到一个多维向量,对该向量进行软最大(softmax())处理,将结果作为每个特征图的贡献度;第五步:将贡献度与对应的特征图相乘,并将相乘后的特征图相加,获得最终的类激活图。
-
公开(公告)号:CN111017727B
公开(公告)日:2021-11-16
申请号:CN201911204265.2
申请日:2019-11-29
Applicant: 北京航天自动控制研究所
Inventor: 张伯川 , 唐波 , 刘燕欣 , 高仕博 , 张聪 , 肖利平 , 郑智辉 , 邵学辉 , 龚任杰 , 郭宸瑞 , 李钊 , 赵玲 , 苏晓静 , 朱泽林 , 司文杰 , 杨庆军 , 聂鹏 , 刘国明
Abstract: 本发明涉及一种轮胎吊自动纠偏控制停机判断方法,通过下述方式实现:根据轮胎吊行进时的车轮与地面安全区域和危险区域的关系,确定出轮胎吊行进时角度最大偏差Δαmax及制动期间轮胎吊位置偏差最大值D制动max;根据轮胎吊行进时角度最大偏差确定图像处理延时对轮胎吊行进位置偏差影响,确定影响距离Ddelay;根据制动期间轮胎吊位置偏差最大值及影响距离,确定轮胎吊制动保护距离阈值YZ;根据轮胎吊运动轨迹的解析表达式,根据给定的位置偏差,结合两种探测器可能的角度偏差,使用K‑S检测方法确定轮胎吊行进实际轨迹;根据实际轨迹确定轮胎吊行进过程中的最大偏差,根据该最大偏差与轮胎吊制动保护距离阈值的关系结合行进过程中的车速确定轮胎吊是否停机。
-
-
-
-
-
-
-
-
-