Abstract:
A piezoelectric film contains a piezoelectric material having a wurtzite-type crystal structure as a main component, and an additive element containing Kr, wherein the piezoelectric material contains a component selected from the group consisting of Zn, Al, Ga, Cd, and Si, as an electropositive element, and wherein a ratio of a content of Kr element to a content of contained elements in the piezoelectric material is in a range from 0.01 atm % to 0.05 atm %.
Abstract:
Organic-inorganic hybrid perovskite has demonstrated tremendous potential for the next generation of electronic and optoelectronic devices due to their remarkable carrier dynamics. However, current studies of electronic and optoelectronic devices have been focused on polycrystalline materials, due to the challenges in synthesizing device compatible high quality single crystalline materials. Here, we firstly report the epitaxial growth of single crystal hybrid perovskites with controlled locations, morphologies, and orientations, using combined strategies of lithography, homoepitaxy, and low temperature solution method. The crystals grow following a layer-by-layer model under controlled growth parameters. The process is robust and can be readily scaled up. The as-grown epitaxial single crystals were integrated in an array of light emitting diodes, each crystal as a pixel with enhanced quantum efficiencies. This capability opens up new opportunities for designing and fabricating a diverse range of high performance electronic and optoelectronic devices using crystalline hybrid perovskites.
Abstract:
In a general aspect, a ceramic thin film with nanotwinned regions at a tunable volume fraction is manufactured. In some aspects, a method for manufacturing a ceramic thin film on a surface of a substrate in an evacuated chamber is disclosed. The ceramic thin film includes crystalline grains; and each of the crystalline grains includes one or more nanotwinned regions. The one or more nanotwinned regions have a volume fraction in a range of 30-80% of the ceramic thin film. The ceramic thin film comprises titanium, nitrogen, and boron. A plurality of targets including a plurality of sputtering materials is prepared. A gas atmosphere in the evacuated chamber is formed. Electric power is supplied to the plurality of targets to cause co-sputtering of the plurality of sputtering materials to form the ceramic thin film with the one or more nanotwinned regions.
Abstract:
Systems, methods, and devices of the various embodiments may provide a mechanism to enable the growth of a rhombohedral epitaxy at a lower substrate temperature by energizing the atoms in flux, thereby reducing the substrate temperature to a moderate level. In various embodiments, sufficiently energized atoms provide the essential energy needed for the rhombohedral epitaxy process which deforms the original cubic crystalline structure approximately into a rhombohedron by physically aligning the crystal structure of both materials at a lower substrate temperature.
Abstract:
A method of forming a single-crystal group-III nitride is provided in the present invention. In some embodiments, the method includes the following steps. First, a molybdenum disulfide (MoS2) is formed on a remote substrate. Then, the MoS2 is transferred onto a substrate. Next, a sputtering operation is performed to epitaxially grow a single-crystal group-III nitride layer on the MoS2, so as to form the single-crystal group-III nitride layer on the substrate such as a Si substrate or a flexible substrate.
Abstract:
Provided are a metal nitride material for a thermistor, which exhibits high reliability and high heat resistance and can be directly deposited on a film or the like without firing, a method for producing the metal nitride material for a thermistor, and a film type thermistor sensor. The metal nitride material for a thermistor consists of a metal nitride represented by the general formula: TixAlyNz (where 0.70≦y/(x+y)≦0.95, 0.4≦z≦0.5, and x+y+z=1), and the crystal structure thereof is a hexagonal wurtzite-type single phase.
Abstract:
According to the embodiment, a radiation detector includes a photoelectric conversion substrate converting light to an electrical signal and a scintillator layer being in contact with the photoelectric conversion substrate and converting externally incident radiation to light. The scintillator layer is made of a phosphor containing Tl as an activator in CsI, which is a halide. A concentration of the activator in the phosphor is 1.6 mass %±0.4 mass %, and a concentration distribution of the activator in an in-plane direction and a film thickness direction is within ±15%.
Abstract:
The present invention provides a monolithic integrated lattice mismatched crystal template and a preparation method thereof by using low-viscosity material, the preparation method for the crystal template includes: providing a first crystal layer with a first lattice constant; growing a buffer layer on the first crystal layer; below the melting point of the buffer layer, growing a second crystal layer and a template layer by sequentially performing the growth process of a second crystal layer and the growth process of a first template layer on the buffer layer, or growing a template layer by directly performing a first template layer growth process on the buffer layer; melting and converting the buffer layer to an amorphous state, performing a second template layer growth process on the template layer grown by the first template layer growth process at the growth temperature above the glass transition temperature of the buffer layer, sequentially growing a template layer until the lattice of the template layer is fully relaxed. Compared to the prior art, the invention has advantages of simple preparation, achieving in various lattice constant material combinations on one substrate and low dislocation density, high crystal quality.
Abstract:
According to the embodiment, a radiation detector includes a photoelectric conversion substrate converting light to an electrical signal and a scintillator layer being in contact with the photoelectric conversion substrate and converting externally incident radiation to light. The scintillator layer is made of a phosphor containing Tl as an activator in CsI, which is a halide. A concentration of the activator in the phosphor is 1.6 mass %±0.4 mass %, and a concentration distribution of the activator in an in-plane direction and a film thickness direction is within ±15%.
Abstract:
The present invention is directed to a method of growing thin film diamond. Since there are micro-grooves formed between internal grains of the heterogeneous substrate during lateral epitaxy growth, diamond seeds are allowed to be embedded in the micro-grooves; surface damage caused by scratching method or seeding method also can be prevented. As a result, a continuous diamond thin film with uniform thickness and high quality can be obtained.