摘要:
The present invention provides a monolithic integrated lattice mismatched crystal template and a preparation method thereof by using low-viscosity material, the preparation method for the crystal template includes: providing a first crystal layer with a first lattice constant; growing a buffer layer on the first crystal layer; below the melting point of the buffer layer, growing a second crystal layer and a template layer by sequentially performing the growth process of a second crystal layer and the growth process of a first template layer on the buffer layer, or growing a template layer by directly performing a first template layer growth process on the buffer layer; melting and converting the buffer layer to an amorphous state, performing a second template layer growth process on the template layer grown by the first template layer growth process at the growth temperature above the glass transition temperature of the buffer layer, sequentially growing a template layer until the lattice of the template layer is fully relaxed. Compared to the prior art, the invention has advantages of simple preparation, achieving in various lattice constant material combinations on one substrate and low dislocation density, high crystal quality.
摘要:
In various embodiments, electronic devices such as thin-film transistors incorporate electrodes featuring a conductor layer and, disposed below the conductor layer, a barrier layer comprising an alloy of Cu and one or more refractory metal elements selected from the group consisting of Ta, Nb, Mo, W, Zr, Hf, Re, Os, Ru, Rh, Ti, V, Cr, and Ni.
摘要:
A metal material is provided with a bismuth coating which enables the subsequent coating to be accomplished at a high throwing power, and has excellent corrosion resistance, coating adhesion and is able to be produced with reduced damage to the environment. The metal material has a surface and a bismuth-containing layer deposited on at least a part of the surface of the metal material, wherein the percentage of bismuth atoms in the number of atoms in the surface layer of the metal material with a bismuth coating is at least 10%.
摘要:
In various embodiments, electronic devices such as thin-film transistors incorporate electrodes featuring a conductor layer and, disposed below the conductor layer, a barrier layer comprising an alloy of Cu and one or more refractory metal elements selected from the group consisting of Ta, Nb, Mo, W, Zr, Hf, Re, Os, Ru, Rh, Ti, V, Cr, and Ni.
摘要:
A thermal interface material (TIM) assembly is provided for use in conducting heat away from heat generating components. The TIM assembly generally includes a substrate, a metal alloy coupled to at least one side surface of the substrate, and a coating material covering at least part of the substrate and at least part of the metal alloy. The substrate may include a metal foil, a heat dissipating unit, a heat generating component, etc. The metal alloy may include a low melting metal alloy coupled to the substrate to form multiple bumps along the substrate in a pattern. The pattern may be generic such that the TIM assembly may be used with multiple different heat generating components to effectively conduct heat away from the multiple different heat generating components, or it may correspond to particular locations on a heat generating component away from which heat is to be conducted.
摘要:
A method for forming a nickel aluminide based coating on a metallic substrate includes providing a first source for providing a significant portion of the aluminum content for a coating precursor and a separate nickel alloy source for providing substantially all the nickel and additional alloying elements for the coating precursor. Cathodic arc (ion plasma) deposition techniques may be utilized to provide the coating precursor on a metallic substrate. The coating precursor may be provided in discrete layers, or from a co-deposition process. Subsequent processing or heat treatment forms the nickel aluminide based coating from the coating precursor.
摘要:
A first material with a known maximum temperature of operation is coated with a second material on at Least one surface of the first material. The coating has a melting temperature that is greater than the maximum temperature of operation of the first material. The coating is heated to its melting temperature until the coating flows into any cracks in the first material's surface.
摘要:
A coated article includes a substrate, a catalyst layer, a bonding layer and a hydrophobic layer. The catalyst layer made of tin is formed on the substrate. The bonding layer is formed on the catalyst layer, including titanium, tin, stannic oxide and titanium dioxide. The hydrophobic layer made of silicon-nitrogen is formed on the bonding layer.
摘要:
A first material with a known maximum temperature of operation is coated with a second material on at least one surface of the first material. The coating has a melting temperature that is greater than the maximum temperature of operation of the first material. The coating is heated to its melting temperature until the coating flows into any cracks in the first material's surface.
摘要:
A process for electroplating high adhesion copper layer on a surface of a highly oxidizable metal in an invariable container, and products produced by this process are provided.