Controlled homo-epitaxial growth of hybrid perovskites

    公开(公告)号:US11572635B2

    公开(公告)日:2023-02-07

    申请号:US16765641

    申请日:2018-11-20

    Abstract: Organic-inorganic hybrid perovskite has demonstrated tremendous potential for the next generation of electronic and optoelectronic devices due to their remarkable carrier dynamics. However, current studies of electronic and optoelectronic devices have been focused on polycrystalline materials, due to the challenges in synthesizing device compatible high quality single crystalline materials. Here, we firstly report the epitaxial growth of single crystal hybrid perovskites with controlled locations, morphologies, and orientations, using combined strategies of lithography, homoepitaxy, and low temperature solution method. The crystals grow following a layer-by-layer model under controlled growth parameters. The process is robust and can be readily scaled up. The as-grown epitaxial single crystals were integrated in an array of light emitting diodes, each crystal as a pixel with enhanced quantum efficiencies. This capability opens up new opportunities for designing and fabricating a diverse range of high performance electronic and optoelectronic devices using crystalline hybrid perovskites.

    CONTROLLED HOMO-EPITAXIAL GROWTH OF HYBRID PEROVSKITES

    公开(公告)号:US20200299861A1

    公开(公告)日:2020-09-24

    申请号:US16765641

    申请日:2018-11-20

    Abstract: Organic-inorganic hybrid perovskite has demonstrated tremendous potential for the next generation of electronic and optoelectronic devices due to their remarkable carrier dynamics. However, current studies of electronic and optoelectronic devices have been focused on polycrystalline materials, due to the challenges in synthesizing device compatible high quality single crystalline materials. Here, we firstly report the epitaxial growth of single crystal hybrid perovskites with controlled locations, morphologies, and orientations, using combined strategies of lithography, homoepitaxy, and low temperature solution method. The crystals grow following a layer-by-layer model under controlled growth parameters. The process is robust and can be readily scaled up. The as-grown epitaxial single crystals were integrated in an array of light emitting diodes, each crystal as a pixel with enhanced quantum efficiencies. This capability opens up new opportunities for designing and fabricating a diverse range of high performance electronic and optoelectronic devices using crystalline hybrid perovskites.

Patent Agency Ranking