Abstract:
A method for preparing keratin-based composites includes mixing polysaccharide nanoparticles and a keratin solution to form a nanoparticle-keratin solution; and solvent casting the nanoparticle-keratin solution to form the keratin-based composites.
Abstract:
Provided herein are keratin compositions (e.g., keratin gels, scaffolds, particulates, and the like) including a compound of interest, useful for release and/or delivery of the compound of interest (e.g., in vivo or in vitro). In some embodiments, the composition is a composition formulated for controlled release of the compound of interest.
Abstract:
The present invention provides methods for producing a silk protein spinning dope solution suitable for producing high toughness fibers, the thus produced silk protein spinning dope solution, methods for producing fibers using said silk protein spinning dope solution.
Abstract:
A thermosensitive ionic composite having a multistage phase transition characteristic, a method for preparing the thermosensitive ionic composite, and a biodegradable composition containing the thermosensitive ionic composite are provided.
Abstract:
Polymeric materials are provided that are produced from a blend of hydrophilic and hydrophobic biodegradable polymers. The polymeric materials can form fibers, nonwoven fabrics, films, coatings, etc. A compound can be incorporated in the polymeric materials. The delivery of the compound can be controlled by diffusion of the compound from the polymeric material and during biodegradation of the polymeric material. The release rate is controlled by varying the composition of the polymeric material to control diffusion rates of the compound and/or biodegradation rate of the polymeric material. This technology provides methods for delivering and controlling release rates of pesticides and related compounds in agricultural and non-agricultural settings. When adhered to plants or plant parts, the polymeric materials can provide protection from insect and disease pests. In pellet or capsule form, pesticides can be delivered into seed furrows along with crop seeds, providing similar protection.
Abstract:
A composite material includes a matrix composed of a polyhydroxyalkanoate (PHA) polymer and a filler composed of particles dispersed in the matrix. The particles are composed of naturally-derived materials (e.g., ground bone meal or pumice powder), have a microporous microstructure, have a low hygroscopic expansion, and are less than 1.0 mm in size. Preferably, the matrix and the filler together constitute 100% by weight of the composite material, and at most 30% by volume of the composite material is consumed by the filler. The composite material may take the form of an anaerobically biodegradable article of manufacture such as a building material a coating of a building material or other article.
Abstract:
An alpha-halocarbo aromatic monomer or comonomer and/or an allyl halide monomer or comonomer can be reacted with aluminum or an aluminum-containing catalyst to form a polymer.
Abstract:
The present invention describes a methods, uses, compositions such as adhesive, sealants and coatings, scaffold material, composite material, all comprising amyloid-like materials such as fibrils, in particular those made from fruit or vegetable proteins. The amyloid-like materials impart good mechanical strength to the materials in which it is employed. Inhibition of amyloid formation is also described.
Abstract:
The invention provides a biocompatible materal derived from keratin that is useful for many aspects of medical treatment of bone. The keratin materal is preferably S-sulfonated and enriched in intermediate filament proteins of high molecular weight. The keratin material may be porous for use as a bone replacment and augmentation product but also provided is the use of dense keratin materials in bone treatment for use as an internal fixation appliance in the treatment of bone fractures and bone regeneration, and a method for preparing the keratin material for use in the preservation, restoration and development of form and function of bone.
Abstract:
A hydrophilic oxygen permeable contact lens having a front surface which is not to be in contact with the cornea of a human eye when the contact lens is worn on the human eye, wherein at least the front surface of the contact lens is coated with a hydrophilicity rendering material which renders the front surface hydrophilic and which is selected from the group consisting of: (A) hydrophilic silicone oil which is represented by the formula given in the specification and whose viscosity at a temperature of 20.degree. C. is not higher than 5,000 centipoise; (B) polysaccharide or its derivative; and (C) denatured collagen whose average molecular weight is in a range of 400.about.100,000. Also disclosed is a method of producing the hydrophilic oxygen permeable contact lens.