摘要:
An integrated circuit having organic dielectric between interconnection layers eliminates damage caused by vapors outgassing from the organic dielectric by the use of a two-component organic layer having a breathable etch resistant organic layer above the main organic dielectric layer, both of the organic layers remaining in the final circuit. The etch resistant layer is resistant to the etchant used to pattern the layer of interconnect above the organic dielectric.
摘要:
A dual dielectric structure is employed in the fabrication of thin film field effect transistors in a matrix addressed liquid display to provide improved transistor device characteristics and also to provide both electrical and chemical isolation for material employed in the gate metallization layer. In particular, the use of a layer of silicon oxide over the gate metallization layer is not only consistent with providing the desired electrical and chemical isolation, but also with providing redundant gate metallization material to be employed beneath source or data lines for electrical circuit redundancy. Gate line redundancy is also possible. The electrical and chemical isolation provided by the dual dielectric layer reduces the possibilities of short circuits occurring in the display. The absence of short circuits together with the improved redundancy characteristics significantly increase manufacturing yield. As display sizes increase, the yield problem becomes more and more significant, generally growing as the square of the diagonal measurement of the screen. The structure in the present invention also significantly reduces gate leakage current. In the process and structure of the present invention, gate electrode material is separated from semiconductor material by the aforementioned dual dielectric, typically comprising layers of silicon oxide disposed beneath a layer of silicon nitride which is, in turn, disposed beneath the active amorphous silicon semiconductor material.
摘要:
A method for planarizing a semiconductor slice prior to its metallization is disclosed. The semiconductor slice is processed so as to form the diffusions and underlying interconnection layers using well known techniques. After the deposition and patterning of the last interconnection layer prior to metallization, a layer of platinum or another metal is deposited onto the slice. The slice is sintered to form a silicide film on those portions of the interconnection layers and diffusions which were directly exposed to the sputtered platinum. A layer of phosphorous-doped dielectric is then deposited, followed by a layer of undoped oxide. Photoresist or another conformal material is spun on to the slice, resulting in a planar top surface. The slice is exposed to a plasma etch which etches both the photoresist and the undoped oxide, resulting in a top surface of the undoped oxide which is substantially planar. Contact vias are etched through the undoped and doped oxides; the silicide film acts as an etch stop, allowing contacts of differing depths to be etched from the planar top surface of the undoped oxide without etching through any of the polysilicon layers to which contact is to be made. A metal such as tungsten is deposited onto the slice to fill the contact vias, and is planarized in the same fashion as was the undoped oxide. The metallization is then sputtered onto the planar surface presented by the planarized undoped oxide and the planarized tungsten, and is patterned and etched to form the desired interconnection pattern.
摘要:
An improved method for making a self-aligned vertical field effect transistor is provided wherein a nitride sidewall spacer is formed around a polysilicon gate, and an oxide sidewall spacer, which may be heavily doped with an n-type dopant, is formed covering the silicon nitride sidewall spacer. The silicon nitride sidewall spacer allows the oxide sidewall spacer of a conventional self-aligned vertical field effect transistor process to be removed partially or completely before making ohmic contact to the source thus increasing the contact area between the source and the source electrode and eliminating reliability problems related to n-type doped oxide in contact with aluminum electrodes.
摘要:
A method for planarizing a semiconductor slice prior to its metallization is disclosed. The semiconductor slice is processed so as to form the diffusions and underlying interconnection layers using well known techniques. After the deposition and patterning of the last interconnection layer prior to metallization, a layer of the platinum or another metal is deposited onto the slice. The slice is sintered to form a silicide film on those portions of the interconnection layers and diffusions which were directly exposed to the sputtered platinum. A layer of phosphorous-doped dielectric is then deposited, followed by a layer of undoped oxide. Photoresist or another conformal material is spun on to the slice, resulting in a planar top surface. The slice is exposed to a plasma etch which etches both the photoresist and the undoped oxide, resulting in a top surface of the undoped oxide which is substantially planar. Contact vias are etched through the undoped and doped oxides; the silicide film acts as an etch stop, allowing contacts of differing depths to be etched from the planar top surface of the undoped oxide without etching through any of the polysilicon layers to which contact is to be made. A metal such as tungsten is deposited onto the slice to fill the contact vias, and is planarized in the same fashion as was the undoped oxide. The metallization is then sputtered onto the planar surface presented by the planarized undoped oxide and the planarized tungsten, and is patterned and etched to form the desired interconnection pattern.
摘要:
An insulative film, such as SiO.sub.2, Si.sub.3 N.sub.4 and PSG films, is commonly used, for example, the passivation film or to insulate the gate electrode of MISFETs. Stability of the insulative films during the production or operation of the semiconductor devices is enhanced by providing an insulative film which is formed by nitridation, for example, in an NH.sub.3 gas, of an SiO.sub.2 film, preferably a directly thermally oxidized film of silicon. The insulative film according to the present invention is used for a gate insulation film in MISFETs, a capacitor or passivation film for semiconductor devices, and as a mask for selectively forming circuit elements of semiconductor devices. The process for forming the insulative film may comprise successive nitridation, oxidation and nitridation steps.
摘要翻译:通常使用诸如SiO 2,Si 3 N 4和PSG膜的绝缘膜,例如钝化膜或使MISFET的栅电极绝缘。 通过提供通过例如在NH 3气体中形成SiO 2膜,优选直接热氧化的硅膜形成的绝缘膜来增强半导体器件的生产或操作期间的绝缘膜的稳定性。 根据本发明的绝缘膜用于MISFET中的栅极绝缘膜,用于半导体器件的电容器或钝化膜,以及用于选择性地形成半导体器件的电路元件的掩模。 形成绝缘膜的方法可以包括连续的氮化,氧化和氮化步骤。
摘要:
A process for producing VLSI (very large scale integrated) circuits employs techniques of self-aligned gates and contacts for FET devices and self-aligned contacts for both diffused conducting lines in the substrate and polysilicon conducting lines situated on isolating field oxide formed on the substrate. Mask alignment tolerances are increased and rendered non-critical. The use of materials in successive layers having different oxidation and etch characteristics permits selective oxidation of only desired portions of the structure without need for masking, and removal of selected material from desired locations by batch removal processes again without use of masking. The process and resulting structure affords inherently self-aligned gates and contacts for FET devices and conducting lines. Processing may employ conventional diffusion, oxidation, and etch techniques, although optional high energy ion implant techniques may be employed with simplification and reduction of process steps necessary for conventional diffusion techiques. Direct gate, source, drain, polysilicon line and diffused line contacts are provided. The reduction in size of individual elements and improved interconnection capabilities in accordance with the invention provide VLSI circuits having increased density and reliability.
摘要:
A method for fabricating microminiature, planar semiconductor devices in which the number of defects, in particular, pipes, is minimized. The thicknesses of the thermally grown silicon dioxide and of the silicon nitride masking layers which are used for the formation of limited impurity regions by high temperature diffusion processes within the semiconductor substrate have a specified, limited range. The thickness of the silicon dioxide is between 800A - 3000A and the thickness of the silicon nitride is between around 250A and 600A, preferably 500A. The method is particularly useful in forming extremely small emitter regions in bipolar transistors.
摘要:
An MOS field effect transistor includes a substrate in which source and drain regions are formed. A thick silicon dioxide layer is selectively formed on the upper surface of the substrate, so that in the resulting structure, the junction depth associated with the source and drain regions is selectively greater at contact locations and at the portions of the source and drain regions that are in contact with the active channel.
摘要:
Described are procedures for fabricating silicon devices which prevent the formation and/or activation of stacking fault nucleation sites during high temperature processing steps, such as steam oxidation of silicon wafers. The procedures, which take place before such high temperature steps, include forming on the back surface of the wafer a stressed layer and then annealing the wafer for a time and at a temperature effective to cause the nucleation sites to diffuse to a localized region near to the back surface. Illustratively the stressed layer comprises silicon nitride or aluminum oxide. Enhanced gettering is achieved if, prior to forming the stressed layer, interfacial misfit dislocations are introduced into the back surface by, for example, diffusion of phosphorus therein. Following the gettering step(s) on the back surface, conventional procedures, such as growing epilayers and/or forming p-n junctions, are performed on the front surface of the wafer.