Abstract:
An idle tone dispersion device outputs a frequency delta-sigma modulation signal obtained by using either one of a reference signal and a measured signal to perform frequency delta-sigma modulation of the other and dispersing an idle tone. The idle tone dispersion device includes n (n is any natural number equal to or larger than 2) frequency delta-sigma modulation sections and an adder configured to add up output signals of the n frequency delta-sigma modulation sections and output the frequency delta-sigma modulation signal. Each of the n frequency delta-sigma modulation sections uses either one of the reference signal and the measured signal to perform the frequency delta-sigma modulation of the other. At least one of the reference signal and the measured signal includes jitter including a frequency component higher than a frequency of an idle tone of an output signal of the frequency delta-sigma modulation section.
Abstract:
A modem chip communicates with a radio frequency (RF) chip and includes a digital interface configured to receive data including a plurality of samples from the RF chip based on digital communication. A logic block generates a frame synchronization signal based on a clock signal in the modem chip, provides the generated frame synchronization signal to the digital interface, and receives the plurality of samples in synchronization with the frame synchronization signal.
Abstract:
An analog-to-digital converter (ADC) is provided includes a first sigma-delta modulator (SDM) electrically coupled to a first signal input. The first SDM includes a first summing junction configured to receive a plurality of inputs to the first SDM. The ADC further includes a second sigma-delta modulator (SDM) electrically coupled to a second signal input. The second SDM includes a second summing junction configured to receive a plurality of inputs to the second SDM. The first SDM also includes a cross-coupled feedback loop from an output of the first SDM to a negative input of the first summing junction and to a positive input of the second summing junction. The second SDM also includes a cross-coupled feedback loop from an output of the second SDM to a negative input of the first summing junction and to a negative input of the second summing junction.
Abstract:
An analogue-to-digital converter for converting an analogue input signal into a digital output signal, the analogue-to-digital converter including two conversion paths, each configured to receive a version of the analogue input signal and convert it into a digital bit stream, a first feedback loop configured to provide feed-back, to both paths, that is indicative of a difference between the digital bit streams output by the two paths, and a second feedback loop configured to feed-back, to both paths, that is indicative of an average of the digital bit streams output by the two paths.
Abstract:
A sampling circuitry for a plurality of electrodes the circuitry comprising a plurality of charge amplifiers and a plurality of modulators, wherein each charge amplifier and each modulator, comprised in the plurality of charge amplifiers and the plurality of modulators, respectively, corresponds to an electrode of the plurality of electrodes, wherein each modulator is capable of generating a residue signal and a rough code corresponding to each sampled electrode of the plurality of electrodes, a multiplexer capable of receiving a plurality of residue signals generated by the plurality of modulators, a residue analog to digital converter capable of receiving a multiplexed residue signal from the multiplexer and outputting a digitized multiplexed residue signal, and a digital summation circuitry capable of receiving the digitized multiplexed residue signal and a plurality of rough codes, comprising each rough code corresponding to each sample electrode, and outputting a plurality of output codes.
Abstract:
An RF transmitter module for a cellular radio that includes a delta-sigma modulator having a plurality of interleaving dynamic element matching (DEM) circuits providing interleaved digital bits at a reduced clock rate. An interleaver controller controls the DEM circuits so as to provide groups of the digital bits at different points in time. In one embodiment, a summation junction adds the groups of the digital bits to provide a continuous stream of the interleaved digital bits, a DAC converts the stream of interleaved digital bits to an analog signal, and a power amplifier amplifies the analog signal.
Abstract:
A processing system may include multiple selectable processing paths for processing an analog signal in order to reduce noise and increase dynamic range. Techniques are employed to transition between processing paths and calibrate operational parameters of the two paths in order to reduce or eliminate artifacts caused by switching between processing paths.
Abstract:
An encoding apparatus comprises a frame processor (105) which receives a multi channel audio signal comprising at least a first audio signal from a first microphone (101) and a second audio signal from a second microphone (103). An ITD processor 107 then determines an inter time difference between the first audio signal and the second audio signal and a set of delays (109, 111) generates a compensated multi channel audio signal from the multi channel audio signal by delaying at least one of the first and second audio signals in response to the inter time difference signal. A combiner (113) then generates a mono signal by combining channels of the compensated multi channel audio signal and a mono signal encoder (115) encodes the mono signal. The inter time difference may specifically be determined by an algorithm based on determining cross correlations between the first and second audio signals.
Abstract:
A transformer-isolated analog-to-digital converter (ADC) feedback apparatus and method provides reduction of circuit complexity in high power/high voltage systems having a transformer-isolated sensing circuit. The feedback apparatus is a circuit including an ADC for receiving an analog input signal and a transformer having a first winding that receives a modulated output of the analog-to-digital converter. A second winding of the transformer provides an isolated data output of the ADC. A demodulator is coupled to the second winding of the transformer and demodulates the isolated output to generate a digital representation of the analog input signal. The ADC may be a delta-sigma converter and the demodulator may be the corresponding decimation filter. The circuit further includes an isolation circuit for introducing a clock signal and/or power supply waveform at the second winding of the transformer, so that the ADC circuit is supplied with an isolated clock and/or an isolated power supply.
Abstract:
An analog-to-digital converter is provided for converting multiple analog inputs into corresponding digital values. An output interface circuit uses differential signaling to reduce noise and interference induced in the analog portions of the analog-to-digital converter.