Abstract:
A feedback control system configured to drive a load is disclosed. The feedback control system includes an up-sampling circuit, configured to perform an un-sampling operation on a source signal and produce an up-sampled signal with an up-sampling frequency according to the up-sampled signal and a feedback signal from the load; a delta circuit, coupled to the up-sampling circuit and configured to produce a delta signal; a sigma circuit, configured to produce a density modulation signal according to the delta signal; and a driving device, configured to drive the load according to the density modulation signal with the up-sampling frequency.
Abstract:
In various embodiments, a circuit is provided. The circuit includes: a voltage biasing circuit coupled to a microelectro-mechanical system (MEMS) microphone sensor, the MEMS microphone sensor coupled to a driver circuit, and the driver circuit coupled to an oscillator-based ADC circuit. The oscillator-based ADC circuit may include an Nth order sigma-delta modulator, where N is an integer equal to or greater than 1.
Abstract:
An analog/digital converter (ADC) includes an analog stage with at least one first sigma-delta modulator and includes a digital stage with at least one second sigma-delta modulator. The analog stage is configured for outputting a digital signal to the digital stage that is indicative of a noise contribution of the at least one first sigma-delta modulator. The analog stage and the digital stage may be arranged in a multi-stage noise shaping architecture (MASH) architecture.
Abstract:
A delta-sigma modulator includes a receiving circuit, a loop filter module, a quantizer, a delta-sigma truncator, a digital filter module, and an output circuit. The receiving circuit is arranged for receiving a feedback signal and an input signal to generate a summation signal. The loop filter module is arranged for filtering the summation signal to generate a filtered summation signal. The quantizer is arranged for generating a first digital signal according to the filtered summation signal. The delta-sigma truncator is arranged for truncating the first digital signal to generate a second digital signal. The digital filter module is arranged for filtering the first digital signal and the second digital signal to generate a filtered first digital signal and a filtered second digital signal, respectively. The output circuit is arranged for generating an output signal according to the filtered first digital signal and the filtered second digital signal.
Abstract:
A Class-D amplifier includes an analog-to-digital converter (ADC) having a first input node. The ADC receives a first analog input signal and a first feedback signal at the first input node and generates a first digital signal based on the first analog input signal and the first feedback signal. A digital filter generates a second digital signal based on the first digital signal. An output circuit includes a first output node, the output circuit being configured to generate a first output signal at the first output node based on the second digital signal. A first feedback unit generates the first feedback signal as the first output signal scaled by a gain factor having a constant value in the Z-domain.
Abstract:
The disclosure is directed to low-power high-resolution analog-to-digital converter (ADCs) circuits implemented with a delta-sigma modulators (DSMs). The DSM includes a single-bit, self-oscillating digital to analog converter (SB-DAC) and a dual-slope integrating quantizer that may replace an N-bit quantizer found in a conventional DSM. The integrating quantizer of this disclosure oscillates after quantization because the SB-DAC in the feedback path directly closes the DSM loop. The integrating quantizer circuit includes a switch at the input and two phases per sample cycle. During the first phase the switch sends an input analog signal to an integrator. During the second phase, the switch sends the feedback signal from the output of the self-oscillating SB-DAC to the integrator. The input to the SB-DAC may be output from a clocked comparator.
Abstract:
A sigma-delta modulator includes a plurality of quantizers, an input path, a feedback path, a loop filter, a pre-filter, and a connection path. The plurality of quantizers are configured to produce a plurality of quantized signals. The input path is configured to lead an input signal to the plurality of quantizers. The feedback path is configured to feed back a feedback signal into the input path, and the feedback signal is produced by averaging the plurality of quantized signals. The loop filter is put on the input path before the plurality of quantizers, and the loop filter is configured to receive the input signal and the feedback signal. The pre-filter is configured to output a signal to a corresponding quantizer which is one of the plurality of quantizers.
Abstract:
A sigma-delta modulator includes a plurality of quantizers, an input path, a feedback path, a loop filter, a pre-filter, and a connection path. The plurality of quantizers are configured to produce a plurality of quantized signals. The input path is configured to lead an input signal to the plurality of quantizers. The feedback path is configured to feed back a feedback signal into the input path, and the feedback signal is produced by averaging the plurality of quantized signals. The loop filter is put on the input path before the plurality of quantizers, and the loop filter is configured to receive the input signal and the feedback signal. The pre-filter is configured to output a signal to a corresponding quantizer which is one of the plurality of quantizers.
Abstract:
A sigma-delta modulator comprising a plurality of filter stages in series with each other, wherein at least one of the plurality of filter stages is configured to provide a filter-output-signal; and a plurality of gain stages, each gain stage configured to provide a gain-output-signal. The sigma-delta modulator also includes a filter-output-switching-element configured to selectively couple the filter-output-signal to an input terminal of one of the plurality of gain stages; and a plurality of filter-input-switching-elements. Each of the plurality of filter-input-switching-elements is associated with one of the plurality of filter stages, wherein the plurality of filter-input-switching-elements are configured to selectively couple one of the gain-stage-output-signals to an input terminal of its associated one of the plurality of filter stages.
Abstract:
A modified topology for a CTDSM (referred herein as “SCFF”) can effectively deal with signal transfer function (STF) peaking, an inherent property of continuous time feedforward delta sigma converters. The SCFF approach involves providing an additional digital-to-analog (DAC) feedback path to the input of the second integrator (incurring an additional DAC in the circuitry, converting the output of the quantizer into an analog signal and feeding the analog signal to the input of the second integrator). Furthermore, the SCFF approach involves providing two feed-ins: a first feed-in to the input of the second integrator and a second feed-in to the input of the third integrator. The first feed-in can be negative. Advantageously, the modified continuous time delta sigma modulator implementing this approach alleviates some of the peaking issues in the signal transfer function while still enjoy low power consumption.