Abstract:
A system and method are provided for compensating for thermal drift of a probe device. The method includes monitoring a first temperature of a laser source in a sensor head that receives output electrical signals from a DUT and outputs corresponding optical signals; monitoring a second temperature of a photoreceiver in a probe interface that converts the optical signals to electrical test signals to input to the test instrument; calculating a first value of a first bias voltage using the first temperature; applying the first value of the first bias voltage to the laser source to compensate for thermal drift when the first temperature is within a first predefined temperature range; calculating a second value of a second bias voltage for the photoreceiver using the second temperature; and applying the second value of the second bias voltage to the photoreceiver to compensate for thermal drift when the second temperature is within a second predefined temperature range.
Abstract:
An apparatus may include one or more measurement sensors, which may measure power coupled to one or more process stations of the apparatus. The apparatus may additionally include one or more analog-to-digital converters coupled to an output port of a corresponding one of the one or more measurement sensors, which may provide a digital representation of a RF signal measured by the one or more measurement sensors. A processor, coupled to a memory, may determine a crossing of the digital representation of the signal with a reference signal level and may thus determine a frequency content of the RF signal and the characteristic, which may permit the nulling out of phase lag of the one or more measurement sensors.
Abstract:
An oscillator-based sensor interface circuit includes an oscillator and a switching means is arranged for switching between at least two signals to be applied to the oscillator via that input. At least one of the signals is an electrical signal representative of an electrical quantity. A counter is arranged to count a number of cycles produced by the oscillator. A control logic is arranged to control the switching means and to derive a control output signal from a first number of counted oscillator cycles. A feedback element is arranged for converting a representation of the control output signal into a feedback signal used directly or indirectly to maintain a given relation between the first number of counted oscillator cycles.
Abstract:
A signal converter circuit includes a frequency detection circuit configured to determine whether an external control signal is a PWM signal. A PWM frequency converter circuit is configured to detect, when a PWM signal is input, a duty cycle of the PWM signal and to generate a first digital signal. An AD converter is configured to generate a second digital signal based on an input DC voltage or a voltage attributable to a variable resistor to digital data using a maximum AD convertible input voltage as a duty cycle of 100%. An output signal generation circuit is configured to generate, based on the first or second digital signals output from the PWM frequency converter circuit or the AD converter, a PWM signal with a duty cycle based on that first or second digital signals.
Abstract:
There is a need for high-order frequency measurement without greatly increasing consumption currents and chip die sizes. A semiconductor device includes: an electric power measuring portion that performs electric power measurement; a high-order frequency measuring portion that performs high-order frequency measurement; and a clock controller that supplies an electric power measuring portion with a first clock signal at a first sampling frequency and supplies a high-order frequency measuring portion with a second clock signal at a second sampling frequency. The second sampling frequency is higher than the first sampling frequency.
Abstract:
A voltage measuring method for a supplying-end module of an induction type power supply system includes generating a coil signal on a supplying-end coil of the supplying-end module; clamping the coil signal to generate a clamp coil signal; performing signal processing on the clamp coil signal to generate a first signal and a second signal, respectively; generating a cyclic signal, a frequency of which is equal to a frequency of the coil signal; comparing the first signal and the second signal via a comparator to obtain a first time and a second time when the first signal and the second signal have an equal voltage level during a cycle of the cyclic signal; calculating a middle time of the first time and the second time; and sampling the clamp coil signal or the coil signal to obtain a peak voltage of the coil signal according to the middle time.
Abstract:
In accordance with various aspects of the disclosure, devices and methods are disclosed that include measuring, at a transmitter, a reflected power level corresponding to a specific transmit power level, and setting the transmit power to an operational level. At the transmitter, a new operational level of the transmit power may be determined, for example, by selecting at least one trial transmit power level, and based on reflected power levels measured corresponding to the operational level and the at least one trial level of the transmit power, either maintaining the operational level as the new operational level, or determining the at least one trial level as the new operational level. The operational transmit power level may correspond to a lowest reflected power level, or a highest rate of change of the reflected power level with respect to the transmit power level.
Abstract:
A signal processing device and a measuring method are provided. A ring oscillator includes (2n+1) signal transmission circuits (n is an integer greater than or equal to 1). One of the signal transmission circuits comprises an inverter, a first transistor, and a second transistor; one of an input terminal and an output terminal of the inverter is connected to one of a source and a drain of the first transistor; one of a source and a drain of the second transistor is connected to a gate of the first transistor; an output of a k-th (k is an integer greater than or equal to 1 and less than or equal to 2n) signal transmission circuit is connected to an input of a (k+1)-th signal transmission circuit; and an output of a (2n+1)-th signal transmission circuit is connected to an input of a first signal transmission circuit.
Abstract:
A voltage fluctuation detection circuit includes an oscillation circuit configured to receive an operation voltage and perform an oscillation operation, an operation voltage generation unit configured to reduce a detection target voltage and generate the operation voltage, and a fluctuation detection unit configured to measure an oscillation frequency of the oscillation circuit and detect a fluctuation of the detection target voltage.
Abstract:
A method, system, and computer usable program product for in an integrated circuit are provided in the illustrative embodiments. A signal to be measured is identified in the IC. The signal is provided as a first control voltage input to a first VCO in the IC. A first output frequency is generated from the first VCO, the first output frequency having a first frequency value corresponding to the signal. The signal is provided as a second control voltage input to a second VCO in the IC. A second output frequency is generated from the second VCO, the second output frequency having a second frequency value corresponding to the signal. The first and the second output frequency values are exported from the IC. A mean value and a standard deviation of the signal are computed using the output first and second frequency values.