Abstract:
Acoustic resonator devices and filters are disclosed. An acoustic resonator includes a piezoelectric plate having front and back surfaces and an interdigital transducer (IDT). The IDT has a first pitch/mark zone with interleaved fingers having a pitch equal to a first pitch value P1 and a mark equal to a first mark value M1, and a second pitch/mark zone with interleaved fingers having a pitch equal to a second pitch value P2 and a mark equal to a second mark value M2. A radio frequency signal applied to the IDT causes excitation of a same shear primary acoustic mode by both the first pitch/mark zone and the second pitch/mark zone. P1, M1, P2, and M2, are selected such that an amplitude of spurious modes is reduced as compared to a device having a same primary acoustic mode and a single pitch/mark zone.
Abstract:
A substrate for a surface acoustic wave device or bulk acoustic wave device, comprising a support substrate and an piezoelectric layer on the support substrate, wherein the support substrate comprises a semiconductor layer on a stiffening substrate having a coefficient of thermal expansion that is closer to the coefficient of thermal expansion of the material of the piezoelectric layer than that of silicon, the semiconductor layer being arranged between the piezoelectric layer and the stiffening substrate.
Abstract:
Switchable and/or tunable filters, methods of manufacture and design structures are disclosed herein. The method of forming the filters includes forming at least one piezoelectric filter structure comprising a plurality of electrodes formed to be in contact with at least one piezoelectric substrate. The method further includes forming a micro-electro-mechanical structure (MEMS) comprising a MEMS beam in which, upon actuation, the MEMS beam will turn on the at least one piezoelectric filter structure by interleaving electrodes in contact with the piezoelectric substrate or sandwiching the at least one piezoelectric substrate between the electrodes.
Abstract:
Mechanical resonators including doped piezoelectric active layers are described. The piezoelectric active layer(s) of the mechanical resonator may be doped with a dopant type and concentration suitable to increase the electromechanical coupling coefficient of the active layer. The increase in electromechanical coupling coefficient may all for improved performance and smaller size mechanical resonators than feasible without using the doping.
Abstract:
An elastic wave device that can be downsized. Certain examples of the elastic wave device include a substrate, an IDT electrode provided above the substrate, a wiring electrode provided above the substrate and connected to the IDT electrode, a sealing body sealing an excitation space in which the IDT electrode excites an elastic wave, and a sealing wall provided above the wiring electrode and forming a part of the sealing body. An outer periphery of the wiring electrode includes a protrusion. In one example, the wiring electrode includes a first wiring electrode provided on an upper surface of the substrate and a second wiring electrode provided on an upper surface of the first wiring electrode, an outer periphery of the second wiring electrode being provided with the protrusion.
Abstract:
An elastic wave device that can be downsized. Certain examples of the elastic wave device include a substrate, an IDT electrode provided above the substrate, a wiring electrode provided above the substrate and connected to the IDT electrode, a sealing body sealing an excitation space in which the IDT electrode excites an elastic wave, and a sealing wall provided above the wiring electrode and forming a part of the sealing body. An outer periphery of the wiring electrode includes a protrusion. In one example, the wiring electrode includes a first wiring electrode provided on an upper surface of the substrate and a second wiring electrode provided on an upper surface of the first wiring electrode, an outer periphery of the second wiring electrode being provided with the protrusion.
Abstract:
Tunable filter structures, methods of manufacture and design structures are disclosed. The method of forming a filter structure includes forming a piezoelectric resonance filter over a cavity structure. The forming of the piezoelectric resonance filter includes: forming an upper electrode on one side of a piezoelectric material; and forming a lower electrode on an opposing side of the piezoelectric material. The method further includes forming a micro-electro-mechanical structure (MEMS) cantilever beam at a location in which, upon actuation, makes contact with the piezoelectric resonance filter.
Abstract:
A device includes: a first electrode having a first electrode thickness; a first acoustic propagation layer disposed on the first electrode, the first piezo-electric layer having a first acoustic propagation layer thickness; a second electrode having a second electrode thickness; a second piezo-electric layer disposed on the first electrode, the second piezo-electric layer having a second acoustic propagation layer thickness; and a third electrode having a third electrode thickness, wherein the second electrode thickness is between 1.15 and 1.8 times the first electrode thickness. The first and third electrode thicknesses may be equal to each other, and the first and second piezo-electric layer thicknesses may be equal to each other. The first and third electrodes may be connected together to provide two acoustic resonators in parallel with each other.
Abstract:
The elementary filter of the HBAR type includes two resonators (20, 22) of the HBAR type which are each formed by a transducer (8) and a substrate (12) which are coupled in a suitable manner by electroacoustic waves. The first resonator (20), the second resonator (22) and the coupling element (28) by way of evanescent waves include the same monobloc acoustic substrate (12) which is arranged facing and coupled to the piezoelectric transducer (8) by waves having the same longitudinal or transverse vibration mode through the same reference electrode (10).
Abstract:
Objects of the present invention is to provide a piezoelectric resonator having high frequency stability and a sensing sensor using the piezoelectric resonator.In the present invention, a piezoelectric resonator 1 has: a first oscillation area 105 which is provided in a piezoelectric piece 100 and from which a first oscillation frequency is taken out; a second oscillation area which is provided in an area 105 different from the first oscillation area 106 via an elastic boundary area 107 and from which a second oscillation frequency is taken out; and excitation electrodes 101 to 103 provided on one surface side and another surface side of the oscillation areas 105, 106 across the piezoelectric piece 100, and a frequency difference between the first oscillation frequency and the second oscillation frequency is not less than 0.2% nor greater than 2.2% of these oscillation frequencies.