Abstract:
Provided is a piezoelectric resonator having high frequency stability and a sensing sensor using the piezoelectric resonator. A piezoelectric resonator has a first oscillation area which is provided in a piezoelectric piece and from which a first oscillation frequency is taken out. A second oscillation area which is provided in an area different from the first oscillation area via an elastic boundary area and from which a second oscillation frequency is taken out. Excitation electrodes are provided on one surface side and another surface side of the oscillation areas across the piezoelectric piece, and a frequency difference between the first oscillation frequency and the second oscillation frequency is not less than 0.2% nor greater than 2.2% of these oscillation frequencies.
Abstract:
Objects of the present invention is to provide a piezoelectric resonator having high frequency stability and a sensing sensor using the piezoelectric resonator.In the present invention, a piezoelectric resonator 1 has: a first oscillation area 105 which is provided in a piezoelectric piece 100 and from which a first oscillation frequency is taken out; a second oscillation area which is provided in an area 105 different from the first oscillation area 106 via an elastic boundary area 107 and from which a second oscillation frequency is taken out; and excitation electrodes 101 to 103 provided on one surface side and another surface side of the oscillation areas 105, 106 across the piezoelectric piece 100, and a frequency difference between the first oscillation frequency and the second oscillation frequency is not less than 0.2% nor greater than 2.2% of these oscillation frequencies.
Abstract:
An object of the present invention is to improve detecting ability of a piezoelectric sensor.The present invention, in a piezoelectric sensor having electrodes that are each made of a gold layer formed on one surface side and the other surface side of a piezoelectric piece via adhesive layers by sputtering respectively, and having an adsorption layer that is composed of an antibody provided on a front surface of the electrode on the one surface side, and having the electrode on the other surface side provided to face an airtight space, and detecting an antigen adsorbed to the antibody in accordance with a change in an oscillation frequency of the piezoelectric piece, includes: conductive paths connecting the electrodes to an oscillator circuit; and a conductive adhesive provided over the electrodes and the conductive paths in order to fix the electrodes to the conductive paths and having a binder cure in a state where a conductive filler is joined to the gold layer, and a thickness of the gold layer is set to be equal to or more than 3000 Å.
Abstract:
A crystal resonator comprises a first vibrating region provided on a crystal wafer, a second vibrating region provided on the crystal wafer, the second vibrating region having a different thickness and positive/negative orientation of the X-axis from those of the first vibrating region, and excitation electrodes which are provided respectively on the first vibrating region and the second vibrating region for causing the vibrating regions to vibrate independently. Frequencies that change by different amounts from each other relative to a temperature change can be retrieved from one vibrating region and the other vibrating region. Thus, based on an oscillating frequency of the vibrating region in which a clear frequency change occurs relative to the temperature, the oscillating frequency of the other vibrating region can be controlled. Thereby, increases in the complexity of the crystal oscillator can be suppressed.
Abstract:
A technique for detecting external force applied to a piezoelectric plate is provided. A crystal plate is cantilever-supported in a container. Excitation electrodes are formed on an upper face and lower face, respectively, of the crystal plate. A movable electrode is formed on the lower face side. A fixed electrode is provided on a bottom portion of the container facing the movable electrode. The excitation electrode on the upper face side and the fixed electrode are connected to an oscillation circuit. When the crystal plate bends by external force applied, capacitance between. A direction of the movable electrode along a length direction of the crystal plate is set to 30° to 60°, relative to a face orthogonal to an intended direction of the external force. The movable electrode and fixed electrode changes, and this capacitance change and a deformation of the crystal circuit.
Abstract:
An acceleration measuring apparatus that can easily detect acceleration with high accuracy is provided. In the apparatus, positional displacement of a swingable pendulum member is detected, feedback control is performed to maintain the pendulum member in a stationary state using an actuator, and acceleration is measured by measuring the output of the actuator at this time. A movable electrode is provided to the pendulum member, and a loop is formed in which a fixed electrode provided to oppose the movable electrode, and an oscillating circuit, a crystal unit, and the movable electrode are electrically connected in series. By measuring an oscillating frequency of the oscillating circuit at this time, a change in the size of a variable capacitance formed between the movable electrode and the fixed electrode is detected, and thereby the positional displacement of the pendulum member is detected.
Abstract:
Provided is a device capable of easily and accurately detecting a vibration period when, for example, an earthquake occurs. When a quartz-crystal plate bends upon application of a force, capacitance between a movable electrode provided at its tip portion and a fixed electrode provided on a vessel to face the movable electrode changes, so that an oscillation frequency of the quartz-crystal plate changes according to this capacitance. Therefore, when the vessel is vibrated, there appear a first state where the quartz-crystal plate ends to approach the fixed electrode and a second state where the quartz-crystal plate is in an original state or bends to be apart from the fixed electrode. Accordingly, an oscillation frequency corresponding to the first state and corresponding to the second state alternately appear, and therefore, it is possible to find the period (frequency) of the vibration.
Abstract:
A device is provided for a detecting external force applied to piezoelectric piece. A crystal piece is cantilever-supported in a container. Excitation electrodes are formed on an upper face and lower face, respectively. A movable electrode, connected via a lead-out electrode to the excitation electrode, is formed on the lower face side at a front end of the crystal piece. A fixed electrode is provided on a bottom portion of the container to face this movable electrode. The excitation electrode on the upper face side and the fixed electrode are connected to an oscillation circuit. When the crystal piece bends in response to an applied external force, capacitance between the movable electrode and fixed electrode, changes. This capacitance change results in a corresponding change in oscillation frequency of the crystal piece.
Abstract:
In an external force detection apparatus, a crystal plate is cantilevered within a container. Excitation electrodes are formed on the top surface and the bottom surface of the crystal plate. A movable electrode is formed on a distal end on the bottom surface of the crystal plate and is connected to the excitation electrode on the bottom surface via an extraction electrode. A fixed electrode is provided on the bottom of the container to oppose the movable electrode. The excitation electrode on the top surface and the fixed electrode are connected to an oscillating circuit. When an external force acts on the crystal plate to bend it, the capacitance between the movable electrode and the fixed electrode changes, and this capacitance change is captured as a change in the oscillating frequency of the crystal plate.
Abstract:
There is provided a temperature compensated piezoelectric oscillator which excels in frequency stability and has a good electronic noise characteristic, and with which a circuit can be structured simply. An auxiliary oscillator unit 21 sharing a crystal substrate 2 with a main oscillator unit 11 outputting a set frequency f0 to an outside is used as a temperature detecting unit 32 detecting a temperature T for obtaining a compensation voltage ΔV in a temperature compensated piezoelectric oscillator (TCXO), and electrodes 13, 23 of the main oscillator unit 11 and the auxiliary oscillator unit 21 are provided separately on the crystal substrate 2. For example, a fundamental wave and an overtone are used or a thickness shear vibration and a contour shear vibration are used in the main oscillator unit 11 and the auxiliary oscillator unit 21, respectively.