Abstract:
A method for providing IQ mismatch (IQMM) compensation includes: estimating an overall frequency response of a compensation filter by stepping through a frequency range starting at an initial frequency and performing (1) through (3) at each step, a selected frequency at each step being a multiple of a subcarrier frequency of the initial frequency: (1) sending a single tone signal at the selected frequency, (2) determining a first response of a mismatched signal at the selected frequency and a second response of the mismatched signal at an image frequency of the selected frequency, and (3) estimating a frequency response of the compensation filter at the selected frequency based on the first response and the second response; generating time-domain filter taps based on the estimated overall frequency response of the compensation filter; determining a time delay based on the time-domain filter taps; and generating a compensated signal based on the time delay.
Abstract:
Wide band quadrature signal generation includes a frequency synthesizer generating a LO or 2×LO signal, a polyphase filter coupled to receive the LO signal and generate first in-phase and quadrature LO signals, a 2:1 frequency divider coupled to receive the 2×LO signal and generate second in-phase and quadrature LO signals, and a LO signal selector for selecting either the first or second in-phase LO signals as an output in-phase LO signal and either the first or second quadrature LO signals as an output quadrature LO signal based on an output frequency. In some embodiments, when the output frequency is above a threshold, the first in-phase and quadrature LO signals are selected as the output in-phase and quadrature LO signals and when the output frequency is at or below the threshold, the second in-phase and quadrature LO signals are selected as the output in-phase and quadrature LO signals.
Abstract:
Corrections are provided for mismatches between an in-phase (I) signal and a quadrature-phase (Q) signal, the I and Q signals having a first frequency band. A frequency filter circuit filters the I and Q signals to produce a filtered I and Q output with a second frequency band that is a subset of the first frequency band. Digital circuitry includes a multiple-tap correction filter having a plurality of taps and configured to generate I and Q output signals by filtering the I and Q signals according to respective sets of coefficients for the plurality of taps. A coefficient estimator generates the sets of coefficients relative to different frequency bands.
Abstract:
Local oscillator (LO) leakage and Image are common and undesirable effects in typical transmitters. Typically, fairly complex hardware and algorithms are used to calibrate and reduce these impairments. A single transistor that draws essentially no dc current and occupies a very small area detects the LO leakage and Image signals. The single transistor operating as a square-law device is used to mix the signals at the input and output ports of a power amplifier. The mixed signal generated by the single transistor enables the simultaneous calibration of the LO leakage and Image Rejection.
Abstract:
A method and system of compensating for distortion in a baseband in-phase (I) and a corresponding baseband quadrature (Q) signal. The circuit includes an in-phase I attenuator configured to attenuate the baseband in-phase I signal and an in-phase Q attenuator configured to attenuate the baseband Q signal. There are one or more circuits that are configured to receive the attenuated in-phase I signal and the attenuated baseband Q signal. Each circuit performs a different calculation based on predetermined equations configured to determine the IM2, HD2@0°, HD2@90°, IM3@0°, IM3@90°, HD3@0°, and HD3@90°. The distortion compensation circuit is configured to use the result of at least one of the calculation circuits to generate I and Q distortion compensation signals.
Abstract:
In some examples, a method and apparatus for wireless communication are disclosed. A wireless user equipment (UE) may receive an over-the-air tone pilot and apply the received pilot to a mixer. The mixer may mix the pilot with a local tone to generate a baseband signal. Here, the UE may determine an estimate of one or more parameters corresponding to a residual side band (RSB) in the baseband signal resulting from the mixer, and may accordingly apply the estimated one or more parameters to compensate for the RSB. The estimated RSB parameters may be refreshed online, by taking samples of the over-the-air tone pilot at a suitable refresh rate.
Abstract:
The subject matter discloses an apparatus residing within an RF chip, comprising: a detection unit for detecting IQ mismatch in an IQ signal; an analog calibration module comprising a first analog calibration mechanism for calibrating IQ mismatch in the phase component and a second analog calibration mechanism for calibrating IQ mismatch in the amplitude component; and a control unit for determining a calibration sequence of the IQ signal.
Abstract:
A circuit for performing a residual side band calibration is described. The circuit generally includes a phase imbalance detection circuit. The phase imbalance detection circuit may include a limiter. The phase imbalance detection circuit may be independent of gain imbalance. The circuit may also include a phase imbalance correction circuit. The phase imbalance detection circuit may control coupling between an inphase path and a quadrature path.
Abstract:
Techniques for detecting and correcting phase discontinuity of a local oscillator (LO) signal are disclosed. In one design, a wireless device includes an LO generator and a phase detector. The LO generator generates an LO signal used for frequency conversion and is periodically powered on and off. The phase detector detects the phase of the LO signal when the LO generator is powered on. The detected phase of the LO signal is used to identify phase discontinuity of the LO signal. The wireless device may further include (i) a single-tone generator that generates a single-tone signal used to detect the phase of the LO signal, (ii) a downconverter that downconverts the single-tone signal with the LO signal and provides a downconverted signal used by the phase detector to detect the phase of LO signal, and (iii) phase corrector that corrects phase discontinuity of the LO signal in the analog domain or digital domain.
Abstract:
Various embodiments provide for systems and methods for signal conversion of one modulated signal to another modulated signal using demodulation and then re-modulation. According to some embodiments, a signal receiving system may comprise an I/Q demodulator that demodulates a first modulated signal to an in-phase (“I”) signal and a quadrature (“Q”) signal, an I/Q signal adjustor that adaptively adjusts the Q signal to increase the signal-to-noise ratio (SNR) of a transitory signal that is based on a second modulated signal, and an I/Q modulator that modulates the I signal and the adjusted Q signal to the second modulated signal. To increase the SNR, the Q signal may be adjusted based on a calculated error determined for the transitory signal during demodulation by a demodulator downstream from the I/Q modulator.