摘要:
An optical apparatus includes: a substrate having a first material; an absorption region having a second material different from the first material, the absorption region configured to absorb photons and to generate photo-carriers including electrons and holes in response to the absorbed photons; a first well region surrounding the absorption region and arranged between the absorption region and the substrate, the first well region being doped with a first polarity; and one or more switches each controlled by a respective control signal, the one or more switches each configured to collect at least a portion of the photo-carriers based on the respective control signal and to provide the portion of the photo-carriers to a respective readout circuit.
摘要:
A method and system for optoelectronic receivers utilizing waveguide heterojunction phototransistors (HPTs) integrated in a wafer are disclosed and may include receiving optical signals via optical fibers operably coupled to a top surface of the chip. Electrical signals may be generated utilizing HPTs that detect the optical signals. The electrical signals may be amplified via voltage amplifiers, or transimpedance amplifiers, the outputs of which may be utilized to bias the HPTs by a feedback network. The optical signals may be coupled into opposite ends of the HPTs. A collector of the HPTs may comprise a silicon layer and a germanium layer, a base may comprise a silicon germanium alloy with germanium composition ranging from 70% to 100%, and an emitter including crystalline or poly Si or SiGe. The optical signals may be demodulated by communicating a mixer signal to a base terminal of the HPTs.
摘要:
An improvement is achieved in the performance of a semiconductor device. A semiconductor device includes an n−-type semiconductor region formed in a p-type well, an n-type semiconductor region formed closer to a main surface of a semiconductor substrate than the n−-type semiconductor region, and a p−-type semiconductor region formed between the n−-type semiconductor region and the n-type semiconductor region. A net impurity concentration in the n−-type semiconductor region is lower than a net impurity concentration in the n-type semiconductor region. A net impurity concentration in the p−-type semiconductor region is lower than a net impurity concentration in the p-type well.
摘要:
The present invention relates to a semiconductor laser for use in an optical module for measuring distances and/or movements, using the self-mixing effect. The semiconductor laser comprises a layer structure including an active region (3) embedded between two layer sequences (1, 2) and further comprises a photodetector arranged to measure an intensity of an optical field resonating in said laser. The photodetector is a phototransistor composed of an emitter layer (e), a collector layer (c) and a base layer (b), each of which being a bulk layer and forming part of one of said layer sequences (1, 2). With the proposed semiconductor laser an optical module based on this laser can be manufactured more easily, at lower costs and in a smaller size than known modules.
摘要:
Disclosed is an active photonic device having a Darlington configuration with a substrate and a collector layer that is over the substrate. The collector layer includes an inner collector region. An outer collector region substantially surrounds the inner collector region and is spaced apart from the inner collector region. A base layer is over the collector layer. A first outer base region and a second outer base region substantially surround the inner base region and are spaced apart from the inner base region and each other. An emitter layer is over the base layer. The emitter layer includes an inner emitter region that is ring-shaped and resides over and extends substantially around an outer periphery of the inner base region. A first outer emitter region and a second outer emitter region substantially surround the inner emitter region and are spaced apart from the inner emitter region and each other.
摘要:
Certain embodiments of the present invention may be directed to a transistor structure. The transistor structure may include a semiconductor substrate. The semiconductor substrate may include a drift region, a collector region, an emitter region, and a lightly-doped/undoped region. The lightly-doped/undoped region may be lightly-doped and/or undoped. The transistor structure may also include a heterostructure. The heterostructure forms a heterojunction with the lightly-doped/undoped region. The transistor structure may also include a collector terminal. The collector terminal is in contact with the collector region. The transistor structure may also include a gate terminal. The gate terminal is in contact with the heterostructure. The transistor structure may also include an emitter terminal. The emitter terminal is in contact with the lightly-doped/undoped region and the emitter region.
摘要:
Methods and systems include constructing and operating a semiconductor device with a mid-band dopant layer. In various implementations, carriers that are optically excited in a mid-band dopant region may provide injection currents that may reduce transition times and increase achievable operating frequency in a bipolar junction transistor (BJT). In various implementations, carriers that are optically excited in a mid-band dopant region within a thyristor may improve closure transition time, effective current spreading velocity, and maximum rate of current rise.
摘要:
An integrated sensor for detecting the presence of an environmental material and/or condition includes a sensing structure and first and second bipolar junction transistors (BJTs). The first BJT has a base that is electrically coupled with the sensing structure and is configured to generate an output signal indicative of a change in stored charge in the sensing structure. The second BJT is configured to amplify the output signal of the first bipolar junction transistor. The first and second BJTs and the sensing structure are monolithically formed a common substrate.
摘要:
A sensor includes a collector, an emitter and a base-region barrier formed as an inverted bipolar junction transistor having a base substrate forming a base electrode to activate the inverted bipolar junction transistor. A level surface is formed by the collector, the emitter and the base-region barrier opposite the base substrate such that when the level surface is exposed to charge, the charge is measured during operation of the bipolar junction transistor.
摘要:
An optical through silicon via is formed in a silicon substrate of an integrated circuit. A photo detector is formed within the integrated circuit and is optically coupled to a first side of the optical through silicon via. A light generating source optically coupled to a second side of the optical through silicon via is provided. The photo detector is configured to receive a light, generated by the light generating source, propagating through the optical through silicon via. The light, generated by the light generating source, is controlled by a signal generated by a signal generating source.