Abstract:
It is an object to enable a non-destructive inspection of reliability of a bonding part and enabling an accurate inspection. A wedge tool includes: a groove which is formed along a direction of an ultrasonic vibration in a tip portion and in which a bonding wire is disposed in a wedge bonding; a first planar surface and a second planar surface disposed on both sides of the groove; and at least one convex portion formed away from the groove in at least one of the first planar surface and the second planar surface, wherein the bonding wire comes in contact with the convex portion by a deformation of the bonding wire in a bonding part of the bonding wire and a bonded object bonded to each other by a wedge bonding.
Abstract:
A method of calibrating an ultrasonic characteristic on a wire bonding system is provided. The method includes the steps of: (a) determining a reference ultrasonic characteristic for formation of a wire bond; (b) determining a reference non-stick ultrasonic characteristic that results in a non-stick wire bond condition; (c) determining a calibration non-stick ultrasonic characteristic, on a wire bonding system to be calibrated, that results in a non-stick wire bond condition; and (d) determining a calibration factor for the wire bonding system to be calibrated using the reference non-stick ultrasonic characteristic and the calibration non-stick ultrasonic characteristic.
Abstract:
An ultrasonic bonding system is provided. The ultrasonic bonding system includes a bond head assembly and a bonding tool supported by the bond head assembly. The system further includes a pressing member adapted to press against a bonding material bonded using the bonding tool. The pressing member is supported by the bond head assembly and is moveable with respect to the bond head assembly independent of the bonding tool. The ultrasonic bonding system may also be an ultrasonic ribbon bonding system or a solar cell ribbon bonding system for bonding a ribbon material to portions of a solar cell.
Abstract:
In a wire bonding apparatus in which, by identifying recognition marks of a pellet or leads displaced from a reference position in wire-bonding a pellet of a semiconductor device to leads within a field of view of a television camera, the displacements of the bonding positions of the pellet and the lead are corrected and then bonding pads on the pellet are connected to the leads by wires, the field of view is moved from a reference view position in a given moving manner, whereby the recognition marks may be identified rapidly and reliably. This apparatus is well adapted for the wire bonding of a semiconductor device of the DILG sealing type, for example, which is poor in the position accuracy of the bonding position.
Abstract:
Provided is a wire-bonding apparatus (10) including: a capillary (28) through which a wire (30) inserted; and a controller (80). The controller (80) is configured to execute operations including: a disconnection operation, after the second bonding operation, of moving the capillary through which the wire is inserted within a horizontal plane vertical to an axial direction of the capillary while the wire is held in the clamped state, and thereby disconnecting the wire from the second bonding point; a preliminary bonding operation of feeding the wire from the second bonding point to a predetermined preliminary bonding point, and performing preliminary bonding at the preliminary bonding point; and a shaping operation, after the preliminary bonding operation, of shaping the wire projecting from a tip of the capillary into a predetermined flexed shape.
Abstract:
There is provided a technology capable of suppressing the damage applied to a pad. When the divergence angle of an inner chamfer part is smaller than 90 degrees, the ultrasonic conversion load in a direction perpendicular to the surface of the pad is very small in magnitude. In other words, the ultrasonic conversion load in a direction perpendicular to the surface of the pad is sufficiently smaller in magnitude than the ultrasonic conversion load in a direction in parallel with the surface of the pad. Consequently, when the divergence angle of the inner chamfer part is smaller than 90 degrees, the ultrasonic conversion load in a direction perpendicular to the surface of the pad can be sufficiently reduced in magnitude, which can prevent pad peeling.
Abstract:
Provided is a wire-bonding apparatus (10) including: a capillary (28) through which a wire (30) inserted; and a controller (80). The controller (80) is configured to execute operations including: a disconnection operation, after the second bonding operation, of moving the capillary through which the wire is inserted within a horizontal plane vertical to an axial direction of the capillary while the wire is held in the clamped state, and thereby disconnecting the wire from the second bonding point; a preliminary bonding operation of feeding the wire from the second bonding point to a predetermined preliminary bonding point, and performing preliminary bonding at the preliminary bonding point; and a shaping operation, after the preliminary bonding operation, of shaping the wire projecting from a tip of the capillary into a predetermined flexed shape.
Abstract:
Disclosed is an apparatus for mounting a transducer to a bond head of a wire bonder. In particular, the bond head of the wire bonder is operative to mechanically drive the transducer when forming electrical interconnections between separate locations within a semiconductor package. Specifically, the apparatus comprises: i) a flexural structure having a connector for connecting to the transducer, the flexural structure being configured to bend; and ii) at least one actuator attached to the flexural structure, the at least one actuator being operative to bend the flexural structure to thereby cause a displacement of the transducer connected thereto via the connector.
Abstract:
An ultrasonic bonding system is provided. The ultrasonic bonding system includes a bond head assembly and a bonding tool for bonding a conductive bonding material to a workpiece. The ultrasonic bonding system also includes a pressing member adapted to press against the workpiece, the pressing member being supported by the bond head assembly and being moveable with respect to the bond head assembly independent of the bonding tool. The pressing member includes a body portion and a plurality of pressing elements extending below the body portion, the pressing elements being configured to contact the workpiece.
Abstract:
An ultrasonic bonding system is provided. The ultrasonic bonding system includes a bond head assembly and a bonding tool supported by the bond head assembly. The system further includes a pressing member adapted to press against a bonding material bonded using the bonding tool. The pressing member is supported by the bond head assembly and is moveable with respect to the bond head assembly independent of the bonding tool. The ultrasonic bonding system may also be an ultrasonic ribbon bonding system or a solar cell ribbon bonding system for bonding a ribbon material to portions of a solar cell.