Abstract:
Provided is a flip chip mounting apparatus for mounting chips (400) to a substrate (200), and the apparatus includes at least one sectionalized mounting stage (45) divided into a heating section (452) and a non-heating section (456), the heating section being for heating a substrate (200) fixed to a front surface of the heating section, the non-heating section not heating the substrate (200) suctioned to a front surface of the non-heating section. With this, it is possible to provide an electronic-component mounting apparatus that is simple and capable of efficiently mounting a large number of electronic components.
Abstract:
A semiconductor package assembly process that includes attaching one or more dies to a substrate; applying an adhesive material on a periphery of the substrate by an adhesive dispenser having a stamp-type dispensing head; applying a thermal interface material (TIM) on a top surface of the die by a TIM dispenser having a stamp-type dispensing head; and positioning a lid over the one or more dies and placing the lid on top of the adhesive material and the TIM by a lid carrier to encapsulate the one or more dies.
Abstract:
A die bonder that eliminates the need for moving a recognition camera for capturing an image related to adhesive application and achieves high reliability with high throughput is disclosed. The die bonder includes a lead frame; a syringe located above the lead frame and enclosing therein a paste adhesive; a recognition camera lateral to the syringe; an illumination lamp disposed in the vicinity of the recognition camera; and a reflector plate disposed opposite the illumination lamp. The reflector plate is adapted to reflect light from the illumination lamp onto the lead frame at an application surface of the paste adhesive. The recognition camera, illumination lamp, and reflector plate are arranged in a manner that the reflector plate is disposed on −Y side and the recognition camera and the illumination lamp are disposed on +Y side with respect to the syringe located above the lead frame transported in X direction.
Abstract:
A lid attach process includes dipping a periphery of a lid in a dipping tank of adhesive material such that the adhesive material attaches to the periphery of the lid. The lid attach process further includes positioning the lid over a die attached to a substrate using a lid carrier, wherein the periphery of the lid is aligned with a periphery of the lid carrier. The lid attach process further includes attaching the lid to the substrate with the adhesive material forming an interface with the substrate. The lid attach process further includes contacting a thermal interface material (TIM) on the die with the lid.
Abstract:
This document describes apparatuses and techniques for disposing an underfill dam on a device adjacent to a mounting location for an integrated circuit to direct a flow of underfill toward the mounting location so that the underfill does not flow in undesired directions that may undesirably affect adjacent components.
Abstract:
Disclosed is a die bonding tool comprising: a rigid body; and a collet having a die-holding portion; wherein the collet is mechanically coupled to the rigid body by a flexible element which is configured to angularly deflect relative to the rigid body on application of a torque to the collet and/or to a die held by the collet. Also disclosed is a die bonding system comprising the die bonding tool, and an adhesive dispenser for a die bonding system.
Abstract:
An apparatus for placing and mounting solder balls on an integrated circuit substrate contains: a fixture, a vacuuming device, a guiding plate, and a storage tank. The fixture includes a plurality of first grooves defined therein, the vacuuming device is disposed over the fixture and includes a vacuum chamber which has an air pore so that when air is drawn out of the vacuum chamber via the air pore, a plurality of solder balls are attached, and when the air is fed into the vacuum chamber from the air pore, the plurality of solder balls are released. The guiding plate is secured below the fixture, and the storage tank is arranged below the guiding plate and is applied to accommodate the plurality of solder balls. Thereby, a production yield of placing and mounting the plurality of solder balls on an integrated circuit substrate is enhanced.
Abstract:
A method of dispensing an underfill material on a semiconductor device package. A substrate having a semiconductor chip electrically connected thereto and offset from the substrate by solder joints is provided. The semiconductor chip has a footprint defined by a length and width of the semiconductor chip. Standoff heights between the substrate and the semiconductor chip are calculated and used to determine a volume of underfill material needed to substantially fill a space between the substrate and the semiconductor chip. The determined volume of underfill material is dispensed on the substrate such that the space between the substrate and the semiconductor chip is substantially filled by the underfill material. The method may allow for improved dispensing an underfill material to substantially fill the space between the substrate and semiconductor chip when variations in standoff height are present.
Abstract:
One embodiment of the present invention discloses an intelligent dispensing adjustment system and the method thereof. The system can dynamically detect the fluid dispensing amount of a fluid dispensing unit via a calculating unit having an intelligent dispensing mechanism and keeps monitoring the dispensing situation of the fluid material so as to automatically adjust the fluid dispensing amount of the fluid dispensing unit. The system can adjust the fluid dispensing amount of the fluid dispensing unit by obtaining the information of the state of previously dispensing the fluid material via a closed loop, which can solve the problems, of prior art, that the defects of products may be incurred because the state of the fluid material is hard to control (e.g., the fluid material is insufficient or overflows).
Abstract:
A method and apparatus for soldering a chip (1a) to a substrate (3). A chip carrier (8) is provided between a flash lamp (5) and the substrate (3). The chip (1a) is attached to the chip carrier (8) on a side of the chip carrier (8) facing the substrate (3). A solder material (2) is disposed between the chip (1a) and the substrate (3). The flash lamp (5) generates a light pulse (6) for heating the chip (1a). The heating of the chip (1a) causes the chip (1a) to be released from the chip carrier (8) towards the substrate (3). The solder material (2) is at least partially melted by contact with the heated chip (1a) for attaching the chip (1a) to the substrate (3).