Abstract:
Package on package structures and manners of formation are described. In an embodiment, an array of trenches is formed partially through a fan-out substrate. In an embodiment, a plurality of laterally separate locations thermal interface material is dispensed onto an array of embedded bottom die. In an embodiment a thermal compression tool including an array of cavities corresponding to an array of top packages is brought into contact with the array of top packages and underlying fan-out substrate during PoP joint formation. The fan-out substrate may be secured to a vacuum chuck during several processing operations.
Abstract:
An object of the present invention is to provide an underfill composition having excellent temporal stability and good metal adhesiveness, a coating film formed of the underfill composition, a cured film, a multilayer interconnection board, and a manufacturing method of a multilayer interconnection board. The underfill composition of the present invention is an underfill composition containing a polymer and a maleimide compound having a maleimide group, in which the polymer has a cyano group, and a content of the cyano group included in 1 g of the polymer is 0.1 to 6 mmol/g.
Abstract:
A semiconductor device has a first board (10) having a first electrically conducting layer (11) and a first electronic element (12) that is provided on the first electrically conducting layer (11); and an intermediate layer (20) being provided on the first board (10), and having a plurality of connectors and a resin board section, in which the plurality of connectors are fixed. The connector is exposed from the resin board section on the first board (10) side, and connected with the first electrically conducting layer (11) or the first electronic element (12).
Abstract:
A heat dissipation structure of an electric component that generates heat includes: a heat dissipator provided along a surface of the electric component; a liquid metal interposed between the electric component and the heat dissipator; and a fencing body interposed between the electric component and the heat dissipator in a crushed state and surrounding the liquid metal.
Abstract:
Package on package structures and manners of formation are described. In an embodiment, an array of trenches is formed partially through a fan-out substrate. In an embodiment, a plurality of laterally separate locations thermal interface material is dispensed onto an array of embedded bottom die. In an embodiment a thermal compression tool including an array of cavities corresponding to an array of top packages is brought into contact with the array of top packages and underlying fan-out substrate during PoP joint formation. The fan-out substrate may be secured to a vacuum chuck during several processing operations.
Abstract:
Package on package structures and manners of formation are described. In an embodiment, an array of trenches is formed partially through a fan-out substrate. In an embodiment, a plurality of laterally separate locations thermal interface material is dispensed onto an array of embedded bottom die. In an embodiment a thermal compression tool including an array of cavities corresponding to an array of top packages is brought into contact with the array of top packages and underlying fan-out substrate during PoP joint formation. The fan-out substrate may be secured to a vacuum chuck during several processing operations.
Abstract:
Embodiments of the present invention describe a semiconductor package having an embedded die. The semiconductor package comprises a coreless substrate that contains the embedded die. The semiconductor package provides die stacking or package stacking capabilities. Furthermore, embodiments of the present invention describe a method of fabricating the semiconductor package that minimizes assembly costs.
Abstract:
Embodiments of the present invention describe a semiconductor package having an embedded die. The semiconductor package comprises a coreless substrate that contains the embedded die. The semiconductor package provides die stacking or package stacking capabilities. Furthermore, embodiments of the present invention describe a method of fabricating the semiconductor package that minimizes assembly costs.
Abstract:
Embodiments of the present invention describe a semiconductor package having an embedded die. The semiconductor package comprises a coreless substrate that contains the embedded die. The semiconductor package provides die stacking or package stacking capabilities. Furthermore, embodiments of the present invention describe a method of fabricating the semiconductor package that minimizes assembly costs.
Abstract:
Package on package structures and manners of formation are described. In an embodiment, an array of trenches is formed partially through a fan-out substrate. In an embodiment, a plurality of laterally separate locations thermal interface material is dispensed onto an array of embedded bottom die. In an embodiment a thermal compression tool including an array of cavities corresponding to an array of top packages is brought into contact with the array of top packages and underlying fan-out substrate during PoP joint formation. The fan-out substrate may be secured to a vacuum chuck during several processing operations.