Abstract:
In one embodiment, a charged particle beam drawing apparatus deflects a charged particle beam with a deflector to draw a pattern. The apparatus includes a storage unit that stores an approximate formula indicating a correspondence relationship between a settling time for a DAC amplifier that controls the deflector, and a position shift amount, from a design position, of a drawn position of each evaluation pattern drawn on a first substrate while the settling time and an amount of deflection by the deflector are changed, a shot position correction unit that creates a correction formula indicating a relationship between an amount of deflection and a shot position shift amount at the settling time, from the approximate formula and the settling time for the DAC amplifier based on an amount of deflection of a shot, obtains a position correction amount by using the amount of deflection of the shot and the correction formula, and corrects a shot position defined by the shot data based on the position correction amount, and a drawing unit that performs drawing by using the shot data with a corrected shot position.
Abstract:
A device and method for generating pulses to activate and deactivate a kicker magnet is provided. When the kicker magnet is deactivated the circuit generates and stores a magnetic field in an inductor. When the kicker magnet is activated, the circuit changes configuration so that the magnetic field and current stored in the inductor can provide the necessary current to activate the kicker magnet is a minimal amount of time. The configuration of the circuit changes via the use of switches. The switches can employ Zener diodes arranged so as to provide protection against high voltage events and rogue neutrinos that may bombard the switches when the kicker magnet is used in the context of deflecting a particle beam.
Abstract:
A charged particle beam writing apparatus includes a circuitry to set, when a charged particle beam is deflected to move between plural small regions by a deflector, plural first mesh regions obtained by virtually dividing a chip region into regions by length and width sizes same as those of each of the plural small regions; determine whether a shot figure having been assigned exists in each of the plural first mesh regions; a circuitry to perform, for the plural first mesh regions, merging of two or more adjacent first mesh regions; a circuitry to measure, for each of plural second mesh regions each obtained by merging, the number of first mesh regions each having been determined that an assigned shot figure exists therein; and a circuitry to generate a map for each chip, where measured number of first mesh regions with the shot figure is defined as a map value.
Abstract:
A processing apparatus and a processing method are provided, which use a charged particle beam device that achieves defection of secondary electrons/reflected electrons at a large angle and cancels out noises of an electromagnetic deflector and an electrostatic deflector to suppress a position shift of a primary electron beam caused by circuit noises of a primary beam/secondary beam separation circuit. In the charged particle beam device that includes an electronic optical system radiating a concentrated electron beam onto a sample placed on a stage to perform scanning and captures an image of the sample, a reference signal and a signal generation unit of a voltage-source control signal applied to the electrostatic deflector generating the electrostatic deflector and a reference signal and a signal generation unit of a current-source control signal applied to the electromagnetic deflector generating a magnetic field are made common in an overlapping-electromagnetic-deflector control unit that controls a path of the secondary electrons/reflected electrons incident on a detector, and frequency characteristics and phase characteristics of the voltage control signal are coincident with those of the current-source control signal.
Abstract:
A charged particle beam writing apparatus includes a circuitry to set, when a charged particle beam is deflected to move between plural small regions by a deflector, plural first mesh regions obtained by virtually dividing a chip region into regions by length and width sizes same as those of each of the plural small regions; determine whether a shot figure having been assigned exists in each of the plural first mesh regions; a circuitry to perform, for the plural first mesh regions, merging of two or more adjacent first mesh regions; a circuitry to measure, for each of plural second mesh regions each obtained by merging, the number of first mesh regions each having been determined that an assigned shot figure exists therein; and a circuitry to generate a map for each chip, where measured number of first mesh regions with the shot figure is defined as a map value.
Abstract:
The charged particle beam writing apparatus includes a position deflection control circuit. First digital data that is to be used for circuit diagnosis is transmitted from the position deflection control circuit to the DAC amplifier unit at the same rate as a rate of writing on a product reticle and stored in a first maintenance memory. Second digital data is output from a digital section included in the DAC amplifier unit in response to the first digital data and stored in a second maintenance memory. A maintenance clock generator generates a clock signal and reads the first digital data stored in the first maintenance memory and the second digital data stored in the second maintenance memory. The first digital data thus read is compared with the second digital data thus read for each bit to diagnose the digital section.
Abstract:
A timing control circuit controls the timing for applying a voltage to a sub deflector when changing a position to be irradiated with the charged-particle beam. A control computer compares a target line width and a line width of a pattern written with the timing for applying voltage to the sub deflector changed, and determines appropriate timing for applying voltage to the sub deflector from a timing range corresponding to a predetermined allowable range of the difference between the target line width and the line width of the written pattern. The control computer then controls the timing control circuit based on the determined timing.
Abstract:
A charged beam drawing apparatus deflects, by an electrostatic deflector, a charged beam generated from a charged beam source, and applies the charged beam to a desired position on a sample to draw a pattern. The electrostatic deflector includes a plurality of deflecting electrodes arranged symmetrically with respect to a point around an optical axis of the charged beam, a ground external cylinder which is disposed coaxially with the optical axis and which is provided to enclose the deflecting electrodes, a resistive film provided on an inner surface of the ground external cylinder, and a conductive film provided on a surface of the resistive film. A capacitance is formed between the deflecting electrodes and the conductive film, and a resistance is formed between the ground conductor and the conductive film.
Abstract:
An apparatus and method for deflecting electron beams with high precision and high throughput. At least one electrode of a deflecting capacitor is connected to a signal source via a coaxial cable. A termination resistor is further connected to the coaxial cable and the electrode at the joint of the coaxial cable and the electrode. The termination resistor has a resistance matched to the impedance of the coaxial cable and the electrode has an impedance matched to half of the impedance of the coaxial. The deflecting capacitors of the present invention have a minimized loss of precision due to eddy current. The spacing of electrodes in the deflecting capacitors is reduced by a factor of approximately two compared to the state-the-art system.
Abstract:
A beam source of an inspection apparatus discharges a beam, and a stage system holds a specimen and moves in at least one direction. A primary optical system directs the beam to the specimen, and a secondary optical system guides a secondary beam coming from the specimen. A sensor outputs an electric signal of the specimen image from the secondary beam, an image processor generates image information of the specimen by processing the electric signal output by the sensor, and a host computer generates an inspection timing signal for controlling the sensor to transfer the image information at a preset data transfer rate.