Abstract:
The present invention provides a prepreg that has high impact resistance despite being an all-carbon-fiber FRP (CFRP), the prepreg moreover enabling a molding time to be set to five minutes or less and making it possible to reduce molding costs. This prepreg is obtained by impregnating carbon fiber with a matrix resin comprising a mixture of a thermoplastic resin, a thermosetting resin, and a curing agent, wherein: the thermoplastic resin is a phenoxy resin; the thermosetting resin is a urethane acrylate resin; the thermoplastic resin and the thermosetting resin are compounded in a mass ratio of 15:85-35:65 (thermoplastic resin/thermosetting resin); and the curing agent causes cross-linking to occur due to a radical polymerization reaction, and is formed so as to include first and second peroxides having mutually different initiation temperatures, initiation of the second peroxide starting at a temperature at which termination of the first peroxide occurs.
Abstract:
A method of forming a three-dimensional object (e.g. comprised of polyurethane, polyurea, or copolymer thereof) is carried out by: (a) providing a carrier and an optically transparent member having a build surface, the carrier and the build surface defining a build region therebetween; (b) filling the build region with a polymerizable liquid, the polymerizable liquid comprising a mixture of: (i) a light polymerizable liquid first component, and (ii) a second solidifiable component that is different from the first component; (c) irradiating the build region with light through the optically transparent member to form a solid blocked polymer scaffold and advancing the carrier away from the build surface to form a three-dimensional intermediate having the same shape as, or a shape to be imparted to, the three-dimensional object, with the intermediate containing the second solidifiable component; and then (d) contacting the three-dimensional intermediate to water to form the three-dimensional object.
Abstract:
Embodiments of the present disclosure provide for methods of detecting, sensors (e.g., chromogenic sensor), kits, compositions, and the like that related to or use tunable macroporous polymer. In an aspect, tunable macroporous materials as described herein can be used to determine the presence of a certain type(s) and quantity of liquid in a liquid mixture.
Abstract:
The present disclosure provides a photocurable composition, which has excellent coatability and is capable of providing a coating layer having excellent surface quality and thickness uniformity, a coating layer including a cured product of the photocurable composition, and a substrate for a semiconductor process including the coating layer.
Abstract:
The present invention is concerned with a new macromer for use in polymer polyol dispersions, and also with a process for preparing a new macromer of this kind.
Abstract:
The invention relates to a process for producing viscoelastic flexible polyurethane foams by reacting a) polyisocyanates with b) compounds having at least two hydrogen atoms which are reactive toward isocyanate groups, c) blowing agents, wherein the compounds having at least two hydrogen atoms which are reactive toward isocyanate groups b) comprise b1) from 0 to 90 parts by weight of at least one polyether alcohol consisting of exclusively propylene oxide units or propylene oxide units and not more than 50% by weight, based on the total weight of the alkylene oxides used, of ethylene oxide units in the polyether chain and having a nominal functionality of from 3 to 8 and a hydroxyl number in the range from 100 to 350 mg KOH/g, and b2) from 10 to 100 parts by weight of at least one graft polyol which can be prepared by in-situ polymerization of olefinically unsaturated monomers in at least one polyether alcohol which has exclusively propylene oxide units or propylene oxide units and not more than 50% by weight, based on the total amount of alkylene oxides used, of ethylene oxide units in the polyether chain, a nominal functionality of from 2 to 8 and a hydroxyl number in the range from 100 to 350 mg KOH/g, having a solids content of not more than 60% by weight, based on the total amount of polyols and solids used, where the sum of the parts by weight of b1) and b2) is 100.
Abstract:
The present invention is a composition comprising: a) one or more isocyanate functional prepolymers; b) one or more compounds containing a cycloaliphatic tertiary amine; c) one or more compounds containing a peroxide group; and d) one or more acrylate containing components. The system can be used in the form of a two part adhesive or in the form of a one part adhesive and an activator adapted to be applied to the surface of one or more of the substrates to which the adhesive is to be bonded.
Abstract:
One embodiment provides an anti-reflection film or the like that is a layered product having low surface reflectivity, excellent thermoformability, and, in particular, satisfactory abrasion resistance. The anti-reflection film comprises:
a base material layer including a thermoplastic resin; and a low-refractive-index layer that is arranged on at least one surface of the base material layer and that has a refractive index lower than the refractive index of the base material layer, wherein the low-refractive-index layer includes a polymer of a resin material including: a urethane (meth)acrylate derived from
(a1) an aromatic diisocyanate compound and (a2) one or more (meth)acryloyl compounds having a hydroxyl group and a (meth)acryloyl group per molecule; and
Abstract:
The method includes: a) a step of stacking and shaping a prepreg according to the shape of a surface of the structure; b) a step of vacuum-pressurizing the stacked and shaped prepreg; c) a step of heating and curing the vacuum-pressurized prepreg to produce a cured product of the prepreg; and d) a step of bonding the cured product to the surface of the structure. The prepreg includes: a resin composition including an ethylenically unsaturated group-containing resin (A) and a polymerization initiator (B); and reinforcement fibers (C). The polymerization initiator (B) has a 10-hour half-life temperature of 60° C. to 75° C. This method for reinforcing and repairing the structure allows a structure having excellent workability and excellent mechanical strength to be obtained.
Abstract:
A method for producing a fiber for reinforcing rubber, comprising applying an adhesion treatment liquid containing a thermoplastic elastomer, a blocked polyisocyanate, and a rubber latex to a fiber cord to obtain a fiber for reinforcing rubber, wherein the thermoplastic elastomer is incorporated in the form of a water dispersion into the adhesion treatment liquid, wherein the thermoplastic elastomer particles in the water dispersion have an average particle diameter of 0.01 to 1.0 μm.