Abstract:
The present invention relates to a bee venom-purifying method comprising a virus clearance process and a composition for preventing or treating inflammatory disease by using same, the method comprising the steps of: (a) preparing a bee venom solution containing bee venom; (b) adjusting the pH of the bee venom solution prepared in step (a) into 2.0 to 4.0 by acid treatment to primarily deactivate viruses; and (c) filtering the pH-adjusted bee venom solution of step (b) through a nanofilter of 10 to 20 nm to secondarily remove viruses.
Abstract:
Provided herein, in some embodiments, are engineered phagemids that comprise at least one synthetic genetic circuit, wherein the at least one synthetic genetic circuit comprises gene sequences encoding at least one non-lytic antimicrobial peptides (AMPs) and/or antibacterial toxin proteins, a stable origin of replication, and a bacteriophage-packaging signal, wherein the engineered phagemid does not comprise some or all gene sequences encoding bacteriophage proteins required for assembly of a bacteriophage particle.
Abstract:
An intracellular selection system allows screening for peptide bioactivity and stability. Randomized recombinant peptides are screened for bioactivity in a tightly regulated expression system, preferably derived from the wild-type lac operon. Bioactive peptides thus identified are inherently protease- and peptidase-resistant. Also provided are bioactive peptides stabilized by a stabilizing group at the N-terminus, the C-terminus, or both. The stabilizing group can be a small stable protein, such as the Rop protein, glutathione sulfotransferase, thioredoxin, maltose binding protein, or glutathione reductase, an α-helical moiety, or one or more proline residues.
Abstract:
The present invention relates to the field of biotechnology, in particular to genes and use thereof. The present invention employs whole genome sequencing to perform whole genome re-sequencing on a large number of individuals of the honey bee Apis mellifera sinisxinyuan, and obtains genes specific to the A. m. sinisxinyuan. The genes play important roles in the differentiation of A. m. sinisxinyuan from the honey bees in other regions and in the adaptive evolution of A. m. sinisxinyuan to the local environment. The Foxo gene or the Ebony gene provided in the present invention can be used to identify A. m. sinisxinyuan from other subspecies; can also be used for studying the genetic diversity of species resources of bees; and can further be used for studying cold resistance genes. This will fill the gap in the research field of A. m. sinisxinyuan by Chinese researchers.
Abstract:
This invention relates to modified antibiotic peptides, particularly for use in medicine. The invention further relates to composite and methods for destroying microorganisms, such as bacteria, viruses or fungi, and to methods for treating microbial infections. The object of the invention is to develop novel antibiotic peptides, particularly having enhanced antibiotic activity and an expanded spectrum of activity against other strains of bacteria, particularly gram-positive bacteria such as Staphylococcus aureus. According to the invention, the object is attained in a first aspect by a peptide according to claim 1.
Abstract:
This invention relates to modified antibiotic peptides, particularly for use in medicine. The invention further relates to compositions and methods for destroying microorganisms, such as bacteria, viruses or fungi, and to methods for treating microbial infections. The object of the invention is to develop novel antibiotic peptides, particularly having enhanced antibiotic activity and an expanded spectrum of activity against other strains of bacteria, particularly gram-positive bacteria such as Staphylococcus aureus. According to the invention, the object is attained in a first aspect by a peptide according to claim 1.
Abstract:
The invention is in the field of virology and relates to the deformed wing virus (DWV). A new strain of deformed wing virus (DWV) has been identified that is predominant in bees infested with Varroa mites. This particular strain of DWV can be used in diagnostics to identify at risk colonies. Also, inhibitors of the particular strain may be used in the treatment and/or prevention of DWV.
Abstract:
The present invention relates generally to in vivo methods and compositions designed for allergen specific immunotherapy. The compositions include contiguous overlapping peptide fragments which together form an entire amino acid sequence of an allergen.
Abstract:
The present invention concerns the preparation of purified allergens and allergoids, both derived from whole bee venom, for the desensitization (immunotherapy) of subjects affected by a specific allergy. In particular, the present invention concerns a preparation for immunotherapy based on purified bee venom, characterized in that said bee venom is essentially mellitin-free. In addition, the preparation of a monomeric allergoid obtainable through the carbamylation or thiocarbamylation reaction of said mellitin-free bee venom, is described. Said allergoid, being characterized by reduced IgE-binding activity, may be a safer and more effective candidate for specific immunotherapy.
Abstract:
The subject invention pertains to methods and materials for enhancing microbial resistance in plants. Specifically exemplified herein are grapevines transformed with polynucleotides that express a peptide which confers antimicrobial activity.