Abstract:
A nanostructure includes a plurality of substantially spherically curved carbon layers having diameters in a range of 1 nanometer to 1000 nanometers and a plurality of halogen atoms attached to an outer convex side of the carbon layers. A composition of matter includes a liquid fuel and an additive including at least one liquid and a plurality of carbon nano-onions. A method of fabricating an additive for liquid fuel includes creating a carbon-based material using a plasma in an environment including at least one hydrocarbon gas and/or at least one liquid containing hydrocarbons, organometallic metal-complex, and/or element-organic compounds, evaporating organic material from the carbon-based material, halogenating the carbon-based material, and extracting carbon nano-onions from the halogenated carbon-based material.
Abstract:
Systems and methods are disclosed for generation of hyperpolarized target compounds. Generation of a hyperpolarized target compound can include application of a sequence of microwave pulses to a solution containing the target compound or a precursor of the target compound; or modulation of a magnetic field applied to the solution. When the precursor is hyperpolarized, the precursor can be cleaved to generate the hyperpolarized target compound. The hyperpolarized target compound can then be induced to precipitate out of the solution. The precipitate can be redissolved in a specified volume of solvent to form a solution having a desired concentration of the hyperpolarized target compound.
Abstract:
A reactor system that includes a single reactor or a plurality of parallel reactors. A method that includes injecting a mixture including liquid water and a gas, into at least one electrically-conductive inlet capillary tube of a continuously-flowing plasma reactor to generate a flowing liquid film region on one or more internal walls of the continuously-flowing plasma reactor with a gas stream flowing through the flowing liquid film region; propagating a plasma discharge along the flowing liquid film region from at least one electrically-conductive inlet capillary to an electrically-conductive outlet capillary tube at an opposing end of the continuously-flowing plasma reactor; dissociating the liquid water in the plasma discharge to form a plurality of dissociation products; producing hydrogen peroxide and nitrogen oxides from the plurality of dissociation products.
Abstract:
A methane (CH4) gas is synthesized from carbon dioxide (CO2) and hydrogen (H2) using catalyst-dielectric barrier discharge (DBD) plasma at room temperature and atmospheric pressure. In the method and apparatus for synthesizing methane gas of the invention, methane (CH4) gas, which is synthetic natural gas, can be effectively synthesized only from carbon dioxide (CO2) and hydrogen (H2) using DBD plasma at room temperature and atmospheric pressure, and also, additional heating and pressurization devices are not used during the methane gas synthesis process, thus reducing production costs and realizing high-value-added processing due to the absence of risks during the processing.
Abstract:
The invention relates to a reactor comprising a plasma source and a catalyst comprising a mesoporous support. The invention also relates to a process comprising feeding methane to said reactor in order to obtain one or more of ethene, hydrogen and carbon as well as downstream products derived from ethene thus obtained. The invention relates to a reactor comprising as reactor parts: a. a housing and in said housing; b. a plasma source; and c. a catalyst, wherein said catalyst comprises as catalyst parts: i) a mesoporous support; ii) a metal selected from the group Pd, Ni, Ag or at least two thereof, wherein the metal is carried by said mesoporous support; wherein at least a part of said plasma source is located in said housing upstream of said catalyst.
Abstract:
The present disclosure addresses the deficiencies described above by providing systems and methods for enhancing the efficiency and yield of alkene production. The methods and systems provide for the use of activated CO2 in a dehydrogenation reactor along with an alkane stream. Through the use of the methods and systems of the invention, catalyst deactivation by coke deposition is reduced and the selectivity and efficiency of the dehydrogenation reaction is improved.
Abstract:
A method for producing metal chloride Mx+Clx− includes reacting metal carbonate in solid form using phosgene, diphosgene and/or triphosgene to form metal chloride Mx+Clx−, wherein the metal M is selected from the group containing alkali metals, alkaline earth metals, Al and Zn, Li and Mg, or Li, for example, and x corresponds to the valency of the metal cations. An apparatus for performing such method is also disclosed.
Abstract:
A system comprising: a plasma production chamber configured to produce a plasma; a reaction chamber vaporize a precursor material with the plasma to form a reactive mixture; a quench chamber having a frusto-conical surface and a quench region formed within the quench chamber between an ejection port of the reaction chamber and a cooled mixture outlet, wherein the quench region configured to receive the reactive mixture from the ejection port, to cool the reactive mixture to form a cooled mixture, and to supply the cooled mixture to the cooled mixture outlet; and a conditioning fluid injection ring disposed at the ejection port and configured to flow a conditioning fluid directly into the reactive mixture as the reactive mixture flows through the ejection port, thereby disturbing the flow of the reactive mixture, creating turbulence within the quench region and cooling the reactive mixture to form a cooled mixture comprising condensed nanoparticles.
Abstract:
The present invention relates to an integrated plant which comprises a plant for the electrothermic production of ethyne and a plant for electricity generation, the plant for the electrothermic production of ethyne being connected to the plant for electricity generation via a conduit and electricity being generated in the plant for electricity generation from a product gas obtained in the plant for the electrothermic production of ethyne. This integrated plant affords flexible use of electricity by a method in which, at times of a high electricity supply, the plant for the electrothermic production of ethyne is operated and at least some of the hydrogen and/or gaseous hydrocarbons obtained in addition to ethyne is stored and, at times of a low electricity supply, stored hydrogen and/or gaseous hydrocarbons are fed to the plant for electricity generation.
Abstract:
The present invention teaches devices and methods for hyperpolarization by parahydrogen induced polarization. The invention teaches several significant improvements over previous designs, including a heating block, an enhanced solenoid component, and pinch valves and tubing that provide a sterile environment for the sample. All of these advancements can be accomplished while keeping costs to produce the device relatively low.