Abstract:
The invention relates to a method for purifying a mixture to be separated, in a multicolumn chromatography system, the method comprising successively and cyclically:
a step of collecting a raffinate, a step of injecting the mixture to be separated, a step of collecting an extract and an eluent injection step, at an operating temperature; wherein the mixture to be separated has a viscosity at 20° C. greater than or equal to 3 mPa·s; and wherein the dry matter mass concentration of the mixture to be separated is equal, within 5%, to a threshold concentration, said threshold concentration is such that: the viscosity of the mixture to be treated at a dry matter mass concentration equal to the threshold concentration and at the operating temperature, is equal to twice the viscosity of the mixture to be treated, at a dry matter mass concentration equal to 85% of the threshold concentration and at the operating temperature.
Abstract:
The present invention is an improved process and apparatus for producing para-xylene, particularly with respect to a process that involves the methylation of toluene and/or benzene to selectively produce para-xylene, wherein streams having differing amounts of ethylbenzene are separately treated in the recovery of para-xylene. A first hydrocarbon feed comprising xylenes and ethylbenzene is provided to a first para-xylene adsorption section, and a second hydrocarbon feed comprising xylenes and less EB than the first hydrocarbon feed is provided to a second para-xylene adsorption section. Segregating the feeds with differing ethylbenzene contents increases the overall efficiency of the adsorption of para-xylene by the adsorption units. Efficiency and energy savings may be further improved by subjecting the lower-content ethylbenzene stream to liquid phase isomerization.
Abstract:
The present disclosure relates to methods for separating at least one amine chosen from diamines and omega-aminoacids from a feed mixture using a simulated moving bed (SMB) adsorptive technology.
Abstract:
Disclosed is a continuous process for separating or extracting proteins from a low grade mixture of a protein of interest, other proteins, impurities, and salts in a continuous simulated moving bed separation process. The invention provides for direct extraction of heme protein and plant protein from a crude mixture of such proteins, other proteins, impurities and salts using the chromatographic technique of simulated moving bed (SMB) continuous chromatography. The SMB process combines the steps of feed loading, adsorbent washing, product elution, adsorbent regeneration, and adsorbent equilibration. The novel strong anion exchange resin adsorbent is a quaternary amine cross-linked microcellulose wherein the microcellulose is cross-linked with epichlorohydrin and the quaternary amine is 2,3-epoxypropyltrimethyl-ammonium chloride which exhibits selective adsorption of proteins and complete regeneration. Purified protein separated in this manner may provide human health benefits by providing greater medicinal and nutrition opportunities from low quality protein sources.
Abstract:
Methods are provided for the conversion of isosorbide to isoidide, wherein the isosorbide contains sorbitan impurities. The impurities in the isosorbide subjected to epimerization are converted to hydrodeoxygenation products. A method for synthesizing isoidide, comprising, providing an isosorbide containing one or more sorbitans; and, epimerizing the isosorbide to form an epimerization product comprising isoidide and hydrodeoxygenation products.
Abstract:
Methods and systems for separating para-xylene are disclosed. In one exemplary embodiment, a method for separating para-xylene includes the steps of providing a feed stream including para-xylene and other C8 aromatic hydrocarbons to a first adsorbent bed within a radial flow simulated moving bed chamber and providing a desorbent stream to a second bed within the radial flow simulated moving bed chamber. The method further includes circulating the feed stream and the desorbent stream radially within the radial flow simulated moving bed chamber to third and fourth beds within the radial flow simulated moving bed chamber. Still further, the method includes withdrawing an extract stream including the para-xylene from the third bed and withdrawing a raffinate stream including the other C8 aromatic hydrocarbons from the fourth bed.
Abstract:
The present invention relates to a method for separating organohalosilanes. The method includes introducing a mixture including at least a first organohalosilane and a second organohalosilane onto a chromatographic bed including a stationary phase. The method also includes passing a liquid mobile phase through the chromatographic bed to produce an eluate including at least one fraction enriched in the first organohalosilane and at least one fraction enriched in the second organohalosilane.
Abstract:
Methods and systems for separating para-xylene are disclosed. In one exemplary embodiment, a method for separating para-xylene includes the steps of providing a feed stream including para-xylene and other C8 aromatic hydrocarbons to a first adsorbent bed within a radial flow simulated moving bed chamber and providing a desorbent stream to a second bed within the radial flow simulated moving bed chamber. The method further includes circulating the feed stream and the desorbent stream radially within the radial flow simulated moving bed chamber to third and fourth beds within the radial flow simulated moving bed chamber. Still further, the method includes withdrawing an extract stream including the para-xylene from the third bed and withdrawing a raffinate stream including the other C8 aromatic hydrocarbons from the fourth bed.
Abstract:
The present invention relates to a method of separating betaine and at least one other component from a sugar beet based fermentation solution. The invention is based on the use of a combination of SAC resins and WAC resins in a specific order and in specified proportions in a chromatographic SMB separation system. The chromatographic separation system is preferably a single integrated SMB system comprising both SAC and WAC resin beds.
Abstract:
The present invention provides a chromatographic separation process for recovering a polyunsaturated fatty acid (PUFA) product, from a feed mixture, which process comprises introducing the feed mixture to a simulated or actual moving bed chromatography apparatus having a plurality of linked chromatography columns containing, as eluent, an aqueous organic solvent, wherein the apparatus has a plurality of zones comprising at least a first zone and second zone, each zone having an extract stream and a raffinate stream from which liquid can be collected from said plurality of linked chromatography columns, and wherein (a) a raffinate stream containing the PUFA product together with more polar components is collected from a column in the first zone and introduced to a nonadjacent column in the second zone, and/or (b) an extract stream containing the PUFA product together with less polar components is collected from a column in the second zone and introduced to a nonadjacent column in the first zone, said PUFA product being separated from different components of the feed mixture in each zone, and wherein the aqueous organic solvent is other than aqueous alcohol.