Abstract:
Methods of producing bio-fuel and other high-value products from oleaginous biomass (e.g. algae biomass) are provided. The two-step methods use a first step of subcritical water extraction of the biomass at low temperatures to produce polysaccharides and other high value products of interest, followed by, ii) hydrothermal liquefaction of remaining solid biomass at high temperatures to produce bio-oil.
Abstract:
Methods of producing bio-fuel and other high-value products from oleaginous biomass (e.g. algae biomass) are provided. The two-step methods use a first step of subcritical water extraction of the biomass at low temperatures to produce polysaccharides and other high value products of interest, followed by, ii) hydrothermal liquefaction of remaining solid biomass at high temperatures to produce bio-oil.
Abstract:
The present invention provides a chromatographic separation process for recovering a polyunsaturated fatty acid (PUFA) product, from a feed mixture, which process comprises introducing the feed mixture to a simulated or actual moving bed chromatography apparatus having a plurality of linked chromatography columns containing, as eluent, an aqueous organic solvent, wherein the apparatus has a plurality of zones comprising at least a first zone and second zone, each zone having an extract stream and a raffinate stream from which liquid can be collected from said plurality of linked chromatography columns, and wherein (a) a raffinate stream containing the PUFA product together with more polar components is collected from a column in the first zone and introduced to a nonadjacent column in the second zone, and/or (b) an extract stream containing the PUFA product together with less polar components is collected from a column in the second zone and introduced to a nonadjacent column in the first zone, said PUFA product being separated from different components of the feed mixture in each zone, and wherein the aqueous organic solvent is other than aqueous alcohol.
Abstract:
The present invention provides a chromatographic separation process for recovering a polyunsaturated fatty acid (PUFA) product from a feed mixture, which process comprises the steps of: (i) purifying the feed mixture in a first separation step in a simulated or actual moving bed chromatography apparatus having a plurality of linked chromatography columns containing, as eluent, an aqueous organic solvent, to obtain an intermediate product; and (ii) purifying the intermediate product obtained in (i) in a second separation step using a simulated or actual moving bed chromatography apparatus having a plurality of linked chromatography columns containing, as eluent, an aqueous organic solvent, to obtain the PUFA product; wherein (a) the first and second separation steps are carried out sequentially on the same chromatography apparatus, the intermediate product being recovered between the first and second separation steps and the process conditions in the chromatography apparatus being adjusted between the first and second separation steps such that the PUFA product is separated from different components of the feed mixture in each separation step; or (b) the first and second separation steps are carried out on separate first and second chromatography apparatuses respectively, the intermediate product obtained from the first separation step being introduced into the second chromatography apparatus, and the PUFA product being separated from different components of the feed mixture in each separation step.
Abstract:
A method for producing a composition comprising conjugated linoleic acid in an amount of at least 55% by weight, comprises: (i) providing a liquid mixture comprising, as the free acids, from 50 to 95% by weight conjugated linoleic acid and at least 5% by weight of saturated C12-C22 fatty acids; (ii) cooling the liquid mixture to a temperature at which at least a part of the saturated C12-C22 fatty acids precipitate from the mixture as a solid; and (iii) separating the solid from the liquid, wherein the liquid obtained in (iii) comprises conjugated linoleic acid in an amount of at least 55% by weight.
Abstract:
The present disclosure provides a process for producing 20-carbon fatty acids from a plant seed oil, the process comprising: a) providing a plant seed oil comprising fatty acids, wherein the fatty acids include 18-carbon fatty acids; and b) elongating the fatty acids by two carbon atoms to produce a composition comprising 20-carbon fatty acids.
Abstract:
A process for extracting a substance or a substance group from a mixture utilizes a solvent for separation. The mixture is treated with the solvent in the presence of a sorbent as the stationary phase, wherein the solvent is conducted past the sorbent in a co-current flow with the mixture or in a counter-current flow against the mixture, or wherein the solvent is conducted past the non-moving mixture and the sorbent. The solvent and the sorbent are selected such that the holding effect of the sorbent supports the separation by the solvent during the separation procedure and/or subsequently supplements the separation by interacting with the solvent as the mobile phase.
Abstract:
Substantially pure stearidonic acid is isolated from a mixture of polyunsaturated fatty acids by fractionating at 25% to 35% by weight solution of fatty acids by high-performance reverse-phase liquid chromatography using a mobile phase of 75% to 95% by weight methanol and 25% to 5% by weight water. The isolated stearidonic acid is used to prepare pharmaceutical compositions which are administered to treat cardiovascular and thrombo-embolic diseases associated with platelet aggregation.