Abstract:
A liquid crystal display device is provided with a pixel area on a substrate having plural gate lines, plural drain lines, plural thin film transistors and plural pixel electrodes corresponding to the plural thin film transistors, and a drive circuit area disposed at a periphery of the substrate and having a drive circuit for driving the plural thin film transistors. The thin film transistor has a polycrystalline silicon semiconductor layer formed on the substrate, a gate electrode formed on the polycrystalline silicon semiconductor layer with a gate insulating film interposed therebetween, an insulating film to cover the polycrystalline silicon semiconductor layer, the gate insulating film and the gate electrode, a drain electrode formed on the insulating film and electrically connected to the polycrystalline silicon semiconductor layer, and a source electrode formed on the insulating film, spaced from the drain electrode and electrically connected to the polycrystalline silicon semiconductor layer. The unevenness of a surface of the polycrystalline silicon semiconductor layer is within 10% of a thickness of the polycrystalline silicon semiconductor layer.
Abstract:
A liquid crystal display device is provided with a pixel area on a substrate having plural gate lines, plural drain lines, plural thin film transistors and plural pixel electrodes corresponding to the plural thin film transistors, and a drive circuit area disposed at a periphery of the substrate and having a drive circuit for driving the plural thin film transistors. The thin film transistor has a polycrystalline silicon semiconductor layer formed on the substrate, a gate electrode formed on the polycrystalline silicon semiconductor layer with a gate insulating film interposed therebetween, an insulating film to cover the polycrystalline silicon semiconductor layer, the gate insulating film and the gate electrode, a drain electrode formed on the insulating film and electrically connected to the polycrystalline silicon semiconductor layer, and a source electrode formed on the insulating film, spaced from the drain electrode and electrically connected to the polycrystalline silicon semiconductor layer. The unevenness of a surface of the polycrystalline silicon semiconductor layer is within 10% of a thickness of the polycrystalline silicon semiconductor layer.
Abstract:
A method for measuring a biomass which comprises measuring an electric capacitance across at least one pair of electrodes attached to a bioreactor, and thereby continuously measuring a biomass of organisms (such as microorganism and plant or animal cells), which may or may not be immobilized in the bioreactor, according to the electric capacitance (dielectric permitivity) measured. The present invention permits one to measure on-line the quantities of microorgansisms or plant or animal cells without having to take samples from a bioreactor or culture tank.
Abstract:
This invention relates to the structure of a field effect transistor, which is suitable for liquid crystal display of an active matrix scheme and there is disclosed a new structure for the field effect transistor, in which at least one of the source region and the drain region is of multi-layered structure, in which high impurity concentration portions and low impurity concentration portions are alternately superposed on each other.
Abstract:
In the preparation of a dielectric-isolated substrate for semiconductor integrated circuits which comprises a plurality of silicon single crystalline islands in which circuit elements are formed, a region made of an alternate laminate of silicon polycrystalline layers and silicon oxide films for supporting the plurality of silicon single crystalline islands, and a silicon oxide film interposed between the silicon single crystalline islands and the support region for isolating each of the silicon single crystalline islands from the remaining ones and the support region, the formation of three to twelve silicon polycrystalline layers in the support region can remarkably reduce the bending of the substrate resulting from the growth stress of the silicon polycrystalline layers or from the difference in thermal expansion coefficients between the single crystalline silicon and the polycrystalline silicon, and therefore produces a dielectric-isolated substrate showing little bending.
Abstract:
A crystalline semiconductor having an even surface and a large crystal grain size is formed on an economical glass substrate using a laser crystallizing technology. A series of processes, including forming an insulation film on a glass substrate; forming a semiconductor film in the first layer; crystallizing the semiconductor film in the first layer by irradiating laser light stepwise from weak energy laser light to strong energy laser light; forming a semiconductor film in a second layer having a film thickness thinner than that of the semiconductor film in the first layer; performing laser crystallization of the semiconductor thin film in the second layer by irradiating laser light stepwise from weak energy laser light to strong energy laser light, are continuously performed without exposing the workpiece to the atmosphere.
Abstract:
There is provided a proteinaceous biological response modifier having the following properties: (a) molecular weight: 35,000 to 65,000; (b) isoelectric point: 5.0 to 6.1; (c) physiological action on human leukemia cells: to induce human leukemia to differentiate into macrophage-like cells; (d) physiological action on myeloid leukemia cells from mice: to induce myeloid leukemia cells from mice to differentiate into macrophage-like cells; (e) affinity to Concanavalin A Sepharose: not adsorbed; (f) affinity to Blue Sepharose Resin: not adsorbed; (g) pH-stability and thermostability: substantially not inactivated at pH 2 to 10, at 2.degree. C. for 6 hours; not inactivated at 56.degree. C. for 60 minutes; but inactivated by 30% at 70.degree. C. for 60 minutes; (h) sensitivity to enzymes: not inactivated by deoxyribonuclease; not inactivated by glycosidase; and inactivated by protease; (i) flow cytometry analysis: to concentrate cell division cycle of human leukemia cells to G.sub.0 /G.sub.1 phase. There is also provided a process for the production of the proteinaceous biological response modifier comprising culturing human leukemia cells in a differentiation medium in the presence of a substance capable of inducing the human leukemia cells to differentiate into macrophage-like cells; separating the macrophage-like cells from the culture medium; activating the macrophage-like cells in a production medium by a mitogen to enhance the production of the proteinaceous biological response modifier; and isolating the proteinaceous biological response modifier from the production medium.The biological response modifier has anti-tumor activity.
Abstract:
A process for producing L-tryptophan or a derivative thereof is disclosed, wherein an indole compound is reacted with serine, or with pyruvic acid and ammonium ion, in the presence of a culture or treated culture of a microorganism of genus Aeromonas or genus Klebsiella having the ability to produce L-tryptophan or a derivative thereof from an indole compound and serine, or from an indole compound, pyruvic acid and/or its salt, and ammonium ion.
Abstract:
A plane display includes a plurality of pixel capacitors, each of which includes first and second electrodes and a non-linear optical material disposed therebetween. A plurality of storage capacitors are respectively provided in association with the plurality of pixel capacitors, each of which includes the first electrode of the corresponding pixel capacitor, an insulating film, and a third electrode insulated from the first electrode through the insulating film and connected to an external power supply terminal. Additionally, a provided for each storage capacitor and connected between the third electrode of the associated storage capacitor and the external power supply terminal, for preventing a potential drop causable in the course of storing electric charge in the associated storage capacitor.
Abstract:
##STR1## wherein R is ##STR2## The present invention relates to the antioxidative glycoside of structural formula (A) above-shown, obtained from the culture of growing cells derived from the plant body of sesame (Sesamun indicum L.), can provide the glycoside in large quantities by utilizing sesame, and also relates to an antioxidant comprising at least one substance of the glycoside of structural formula (A) above-shown as effective ingredient, the antioxidant being harmless and effective particularly for prevention of oxidation of foods, drugs, cosmetics, etc.