摘要:
This invention relates to a method to characterize an array of polymeric materials comprising: depositing unsilanizable material onto a silanizable substrate in at least 10 regions, thereafter contacting the substrate with an organosilane agent thereby silanizing the substrate but not the unsilanizable material in said regions, optionally, partially or completely removing the unsilanizable material, depositing at least 10 polymeric materials onto said regions, and characterizing the materials. This invention also relates to method for forming an array of polymeric materials to be characterized onto a substrate comprising: (a) selecting ten or more polymers, (b) dissolving or suspending each polymer in a separate liquid, and (c) depositing a uniform amount of each of the ten or more polymer containing liquids onto a substrate in individual hydrophilic and/or hydrophobic regions.
摘要:
This invention relates to a method to characterize an array of polymeric materials comprising: depositing unsilanizable material onto a silanizable substrate in at least 10 regions, thereafter contacting the substrate with an organosilane agent thereby silanizing the substrate but not the unsilanizable material in said regions, optionally, partially or completely removing the unsilanizable material, depositing at least 10 polymeric materials onto said regions, and characterizing the materials. This invention also relates to method for forming an array of polymeric materials to be characterized onto a substrate comprising: (a) selecting ten or more polymers, (b) dissolving or suspending each polymer in a separate liquid, and (c) depositing a uniform amount of each of the ten or more polymer containing liquids onto a substrate in individual hydrophilic and/or hydrophobic regions. Likewise this invention also relates to an array of polymeric materials for use in characterization, comprising: (a) a substrate having multiple regions on the substrate that are not coated with an organosilane and wherein the uncoated regions have a boarder of an organosilane agent coated on the substrate, and (b) a polymer deposited on the regions not coated with an organosilane agent.
摘要:
The present invention provides methods and systems for discretized, combinatorial processing of regions of a substrate such as for the discovery, implementation, optimization, and qualification of new materials, processes, and process sequence integration schemes used in integrated circuit fabrication. A substrate having an array of differentially processed regions thereon is processed by delivering materials to or modifying regions of the substrate.
摘要:
The present invention provides methods and systems for discretized, combinatorial processing of regions of a substrate such as for the discovery, implementation, optimization, and qualification of new materials, processes, and process sequence integration schemes used in integrated circuit fabrication. A substrate having an array of differentially processed regions thereon is processed by delivering materials to or modifying regions of the substrate.
摘要:
The present invention provides methods and systems for discretized, combinatorial processing of regions of a substrate such as for the discovery, implementation, optimization, and qualification of new materials, processes, and process sequence integration schemes used in integrated circuit fabrication. A substrate having an array of differentially processed regions thereon is processed by delivering materials to or modifying regions of the substrate.
摘要:
The present invention provides methods and systems for discretized, combinatorial processing of regions of a substrate such as for the discovery, implementation, optimization, and qualification of new materials, processes, and process sequence integration schemes used in integrated circuit fabrication. A substrate having an array of differentially processed regions thereon is processed by delivering materials to or modifying regions of the substrate.
摘要:
The present invention generally relates to processes for the chemocatalytic conversion of a pentose source to a glutaric acid product. The present invention includes processes for the conversion of pentose to a glutaric acid product via pentaric acid or derivatives thereof. The present invention also includes processes comprising the catalytic oxidation of pentose to pentaric acid and catalytic hydrodeoxygenation of pentaric acid or derivatives thereof to a glutaric acid product.
摘要:
The present invention provides methods and systems for discretized, combinatorial processing of regions of a substrate such as for the discovery, implementation, optimization, and qualification of new materials, processes, and process sequence integration schemes used in integrated circuit fabrication. A substrate having an array of differentially processed regions thereon is processed by delivering materials to or modifying regions of the substrate.
摘要:
Devices are presented including: a substrate including a dielectric region and a conductive region; a molecular self-assembled layer selectively formed on the dielectric region; and a capping layer formed on the conductive region, where the capping layer is an electrically conductive material such as: an alloy of cobalt and boron material, an alloy of cobalt, tungsten, and phosphorous material, an alloy of nickel, molybdenum, and phosphorous. In some embodiments, devices are presented where the molecular self-assembled layer includes one or more of a polyelectrolyte, a dendrimer, a hyper-branched polymer, a polymer brush, a block co-polymer, and a silane-based material where the silane-based material includes one or more hydrolysable substituents of a general formula RnSiX4-n, where R is: an alkyl, a substituted alkyl, a fluoroalkyl, an aryl, a substituted aryl, and a fluoroaryl, and where X is: a halo, an alkoxy, an aryloxy, an amino, an octadecyltrichlorosilane, and an aminopropyltrimethoxysilane.
摘要翻译:本发明提供了包括:包括电介质区域和导电区域的衬底; 选择性地形成在电介质区域上的分子自组装层; 以及形成在导电区域上的覆盖层,其中覆盖层是导电材料,例如钴和硼材料的合金,钴,钨和磷材料的合金,镍,钼和磷的合金 。 在一些实施方案中,存在装置,其中分子自组装层包括聚电解质,树枝状聚合物,超支化聚合物,聚合物刷,嵌段共聚物和硅烷基材料中的一种或多种,其中硅烷 基材料包括一个或多个通式为R x Si x 4-n N的可水解取代基,其中R是:烷基,取代的烷基,氟代烷基,芳基 取代的芳基和氟代芳基,其中X为:卤素,烷氧基,芳氧基,氨基,十八烷基三氯硅烷和氨基丙基三甲氧基硅烷。
摘要:
A masking layer is formed on a dielectric region of an electronic device so that, during subsequent formation of a capping layer on electrically conductive regions of the electronic device that are separated by the dielectric region, the masking layer inhibits formation of capping layer material on or in the dielectric region. The capping layer can be formed selectively on the electrically conductive regions or non-selectively; in either case (particularly in the latter), capping layer material formed over the dielectric region can subsequently be removed, thus ensuring that capping layer material is formed only on the electrically conductive regions. Silane-based materials, such as silane-based SAMs, can be used to form the masking layer. The capping layer can be formed of an electrically conductive material (e.g., a cobalt alloy, a nickel alloy, tungsten, tantalum, tantalum nitride), a semiconductor material, or an electrically insulative material, and can be formed using any appropriate process, including conventional deposition processes such as electroless deposition, chemical vapor deposition, physical vapor deposition or atomic layer deposition.