Abstract:
The present disclosure, in some embodiments, relates to a method of transporting a semiconductor wafer. The method includes transferring a semiconductor wafer into a first wafer slot of a second plurality of wafer slots within an adaptive inset. The adaptive inset is arranged within an interior cavity of a wafer cassette having a first plurality of wafer slots while transferring the semiconductor wafer into the first wafer slot. The wafer cassette and the adaptive inset are transported into a loading port of a semiconductor processing tool configured to perform a fabrication process on the semiconductor wafer.
Abstract:
A group III-V device structure is provided. The group III-V device structure includes a channel layer formed over a substrate and an active layer formed over the channel layer. The group III-V device structure also includes a gate structure formed over the active layer and a source electrode and a drain electrode formed over the active layer. The source electrode and the drain electrode are formed on opposite sides of the gate structure. The group III-V device structure further includes a through via structure formed through the channel layer, the active layer and a portion of the substrate, and the through via structure is electrically connected to the source electrode or the drain electrode.
Abstract:
An integrated circuit (IC) comprising an enhanced passivation scheme for pad openings and trenches is provided. In some embodiments, an interlayer dielectric (ILD) layer covers a substrate and at least partially defines a trench. The trench extends through the ILD layer from a top of the ILD layer to the substrate. A conductive pad overlies the ILD layer. A first passivation layer overlies the ILD layer and the conductive pad, and further defines a pad opening overlying the conductive pad. A second passivation layer overlies the ILD layer, the conductive pad, and the first passivation layer, and further lines sidewalls of the first passivation layer in the pad opening and sidewalls of the ILD layer in the trench. Further, the second passivation layer has a low permeability for moisture or vapor relative to the ILD layer.
Abstract:
An integrated circuit (IC) comprising an enhanced passivation scheme for pad openings and trenches is provided. In some embodiments, an interlayer dielectric (ILD) layer covers a substrate and at least partially defines a trench. The trench extends through the ILD layer from a top of the ILD layer to the substrate. A conductive pad overlies the ILD layer. A first passivation layer overlies the ILD layer and the conductive pad, and further defines a pad opening overlying the conductive pad. A second passivation layer overlies the ILD layer, the conductive pad, and the first passivation layer, and further lines sidewalls of the first passivation layer in the pad opening and sidewalls of the ILD layer in the trench. Further, the second passivation layer has a low permeability for moisture or vapor relative to the ILD layer.
Abstract:
An integrated circuit (IC) comprising an enhanced passivation scheme for pad openings and trenches is provided. In some embodiments, an interlayer dielectric (ILD) layer covers a substrate and at least partially defines a trench. The trench extends through the ILD layer from a top of the ILD layer to the substrate. A conductive pad overlies the ILD layer. A first passivation layer overlies the ILD layer and the conductive pad, and further defines a pad opening overlying the conductive pad. A second passivation layer overlies the ILD layer, the conductive pad, and the first passivation layer, and further lines sidewalls of the first passivation layer in the pad opening and sidewalls of the ILD layer in the trench. Further, the second passivation layer has a low permeability for moisture or vapor relative to the ILD layer.
Abstract:
The present disclosure relates to an integrated circuit with a termination region, and an associated method of formation. In some embodiments, the integrated circuit comprises a cell region and a termination region. The termination region is disposed at an outer periphery of the cell region. The cell region comprises an array of device cells. The termination region comprises a plurality of termination rings encompassing the cell region. The plurality of termination rings have different depths.
Abstract:
A method for forming a semiconductor device includes forming a hard mask layer over a substrate comprising a semiconductor material of a first conductivity type, and forming a plurality of trenches in the hard mask layer and extending into the substrate. Each trench has at least one side wall and a bottom wall. The method further includes forming at least one barrier insulator layer along the at least one side wall and over the bottom wall of each trench, removing the at least one barrier insulator layer over the bottom wall of each trench, and filling the plurality of trenches with a semiconductor material of a second conductivity type.
Abstract:
The present disclosure relates to a method and apparatus to increase breakdown voltage of a semiconductor power device. A bonded wafer is formed by bonding a device wafer to a handle wafer with an intermediate oxide layer. The device wafer is thinned substantially from its original thickness. A power device is formed within the device wafer through a semiconductor fabrication process. The handle wafer is patterned to remove section of the handle wafer below the power device, resulting in a breakdown voltage improvement for the power device as well as a uniform electrostatic potential under reverse biasing conditions of the power device, wherein the breakdown voltage is determined. Other methods and structures are also disclosed.
Abstract:
The present disclosure, in some embodiments, relates to a wafer cassette system. The wafer cassette system includes a wafer cassette includes a first plurality of wafer slots respectively having a first width. An adaptive inset is fastened to the wafer cassette in a rigid connection. The adaptive inset includes a second plurality of wafer slots respectively having a second width that is less than the first width. The second plurality of wafer slots are configured to receive a substrate after the adaptive inset has been fastened to the wafer cassette.
Abstract:
The present disclosure relates to a wafer cassette system having an adaptive inset configured to enable wafers having a first diameter to be held by a wafer cassette configured to hold wafers having a second diameter larger than the first diameter. The wafer cassette system includes a wafer cassette having a first plurality of wafer slots configured to receive one or more wafers having a first diameter. An adaptive inset is arranged in an interior cavity of the wafer cassette. The adaptive inset has a second plurality of wafer slots configured to receive one or more wafers having a second diameter that is less than the first diameter. The adaptive inset allows for the wafer cassette to hold wafers having the second diameter, thereby enabling semiconductor processing tools to processes wafer having a different diameter than those able to be held by wafer cassettes that the tools can receive.