Abstract:
An integrated circuit (IC) comprising an enhanced passivation scheme for pad openings and trenches is provided. In some embodiments, an interlayer dielectric (ILD) layer covers a substrate and at least partially defines a trench. The trench extends through the ILD layer from a top of the ILD layer to the substrate. A conductive pad overlies the ILD layer. A first passivation layer overlies the ILD layer and the conductive pad, and further defines a pad opening overlying the conductive pad. A second passivation layer overlies the ILD layer, the conductive pad, and the first passivation layer, and further lines sidewalls of the first passivation layer in the pad opening and sidewalls of the ILD layer in the trench. Further, the second passivation layer has a low permeability for moisture or vapor relative to the ILD layer.
Abstract:
A semiconductor device includes a first III-V compound layer on a substrate, a second III-V compound layer on the first III-V compound layer, in which a material of the first III-V compound layer is different from that of the second III-V compound layer, a gate metal stack disposed on the second III-V compound layer, a source contact and a drain contact disposed at opposite sides of the gate metal stack, a gate field plate disposed between the gate metal stack and the drain contact, an anti-reflective coating (ARC) layer formed on the source contact and the drain contact, and an etch stop layer formed on the ARC layer.
Abstract:
Some embodiments of the present disclosure relate to a method to increase breakdown voltage of a power device. A power device is formed on a silicon-on-insulator (SOI) wafer made up of a device wafer, a handle wafer, and an intermediate oxide layer. A recess is formed in a lower surface of the handle wafer to define a recessed region of the handle wafer. The recessed region of the handle wafer has a first handle wafer thickness, which is greater than zero. An un-recessed region of the handle wafer has a second handle wafer thickness, which is greater than the first handle wafer thickness. The first handle wafer thickness of the recessed region provides a breakdown voltage improvement for the power device.
Abstract:
A high-voltage super junction device is disclosed. The device includes a semiconductor substrate region having a first conductivity type and having neighboring trenches disposed therein. The neighboring trenches each have trench sidewalls and a trench bottom surface. A region having a second conductivity type is disposed in or adjacent to a trench and meets the semiconductor substrate region at a p-n junction. A gate electrode is formed on the semiconductor substrate region and is electrically isolated from the semiconductor substrate region by a gate dielectric. A body region having the second conductivity type is disposed on opposite sides of the gate electrode near a surface of the semiconductor substrate. A source region having the first conductivity type is disposed within in the body region on opposite sides of the gate electrode near the surface of the semiconductor substrate.
Abstract:
The present disclosure relates to a method and apparatus to increase breakdown voltage of a semiconductor power device. A bonded wafer is formed by bonding a device wafer to a handle wafer with an intermediate oxide layer. The device wafer is thinned substantially from its original thickness. A power device is formed within the device wafer through a semiconductor fabrication process. The handle wafer is patterned to remove section of the handle wafer below the power device, resulting in a breakdown voltage improvement for the power device as well as a uniform electrostatic potential under reverse biasing conditions of the power device, wherein the breakdown voltage is determined. Other methods and structures are also disclosed.
Abstract:
An integrated circuit (IC) comprising an enhanced passivation scheme for pad openings and trenches is provided. In some embodiments, an interlayer dielectric (ILD) layer covers a substrate and at least partially defines a trench. The trench extends through the ILD layer from a top of the ILD layer to the substrate. A conductive pad overlies the ILD layer. A first passivation layer overlies the ILD layer and the conductive pad, and further defines a pad opening overlying the conductive pad. A second passivation layer overlies the ILD layer, the conductive pad, and the first passivation layer, and further lines sidewalls of the first passivation layer in the pad opening and sidewalls of the ILD layer in the trench. Further, the second passivation layer has a low permeability for moisture or vapor relative to the ILD layer.
Abstract:
An integrated circuit (IC) comprising an enhanced passivation scheme for pad openings and trenches is provided. In some embodiments, an interlayer dielectric (ILD) layer covers a substrate and at least partially defines a trench. The trench extends through the ILD layer from a top of the ILD layer to the substrate. A conductive pad overlies the ILD layer. A first passivation layer overlies the ILD layer and the conductive pad, and further defines a pad opening overlying the conductive pad. A second passivation layer overlies the ILD layer, the conductive pad, and the first passivation layer, and further lines sidewalls of the first passivation layer in the pad opening and sidewalls of the ILD layer in the trench. Further, the second passivation layer has a low permeability for moisture or vapor relative to the ILD layer.
Abstract:
An integrated circuit (IC) comprising an enhanced passivation scheme for pad openings and trenches is provided. In some embodiments, an interlayer dielectric (ILD) layer covers a substrate and at least partially defines a trench. The trench extends through the ILD layer from a top of the ILD layer to the substrate. A conductive pad overlies the ILD layer. A first passivation layer overlies the ILD layer and the conductive pad, and further defines a pad opening overlying the conductive pad. A second passivation layer overlies the ILD layer, the conductive pad, and the first passivation layer, and further lines sidewalls of the first passivation layer in the pad opening and sidewalls of the ILD layer in the trench. Further, the second passivation layer has a low permeability for moisture or vapor relative to the ILD layer.
Abstract:
A method for forming a semiconductor device includes forming a hard mask layer over a substrate comprising a semiconductor material of a first conductivity type, and forming a plurality of trenches in the hard mask layer and extending into the substrate. Each trench has at least one side wall and a bottom wall. The method further includes forming at least one barrier insulator layer along the at least one side wall and over the bottom wall of each trench, removing the at least one barrier insulator layer over the bottom wall of each trench, and filling the plurality of trenches with a semiconductor material of a second conductivity type.
Abstract:
The present disclosure relates to a method and apparatus to increase breakdown voltage of a semiconductor power device. A bonded wafer is formed by bonding a device wafer to a handle wafer with an intermediate oxide layer. The device wafer is thinned substantially from its original thickness. A power device is formed within the device wafer through a semiconductor fabrication process. The handle wafer is patterned to remove section of the handle wafer below the power device, resulting in a breakdown voltage improvement for the power device as well as a uniform electrostatic potential under reverse biasing conditions of the power device, wherein the breakdown voltage is determined. Other methods and structures are also disclosed.