Abstract:
A memory device includes a plurality of sense amplifiers, a plurality of memory cells, a plurality of data lines, a plurality of reference cells, and a connection line. The memory cells are coupled to a plurality of first inputs of the plurality of sense amplifiers respectively. The data lines are coupled to a plurality of second inputs of the plurality of sense amplifiers respectively. The reference cells are arranged in a plurality of columns respectively and coupled to the plurality of data line respectively. Each of the plurality of reference cells includes a plurality of resistive elements. The connection line is coupled to the plurality of data lines. In a read mode, one of the sense amplifiers is configured to access the plurality of resistive elements arranged in at least one of the plurality of columns.
Abstract:
Circuits and methods for compensating mismatches in sense amplifiers are disclosed. In one example, a circuit is disclosed. The circuit includes: a first branch, a second branch, a first plurality of trimming transistors and a second plurality of trimming transistors. The first branch comprises a first transistor, a second transistor, and a first node coupled between the first transistor and the second transistor. The second branch comprises a third transistor, a fourth transistor, and a second node coupled between the third transistor and the fourth transistor. The first node is coupled to respective gates of the third transistor and the fourth transistor. The second node is coupled to respective gates of the first transistor and the second transistor. The first plurality of trimming transistors is coupled to the second transistor in parallel. The second plurality of trimming transistors is coupled to the fourth transistor in parallel.
Abstract:
A word line driver circuit includes a first transistor having its gate coupled to a first node configured to receive a word line select signal. A second transistor has its gate coupled to the first node and a drain coupled to a drain of the first transistor at a second node that is coupled to a word line. A word line assist control circuit is coupled to the first node, to the word line, and to a gate of a third transistor. The word line assist control circuit is configured to turn on or turn off the third transistor to adjust a voltage of the word line.
Abstract:
The present disclosure provides a method of fabricating a resistive memory array. In one embodiment, a method of fabricating a resistive memory array includes forming a plurality of insulators and a conductive structure on a first substrate, performing a resistor-forming process to transform the insulators into a plurality of resistors, polishing the conductive structure to expose a plurality of contact points respectively electrically connected to the resistors, providing a second substrate having a plurality of transistors and a plurality of interconnect pads, bonding respectively the interconnect pads and the contact points, and removing the first substrate from the resistors and the conductive structure.
Abstract:
A memory has magnetic tunnel junction elements with different resistances in different logic states, for bit positions in memory words accessed by a word line signal coupling each bit cell in the addressed word between a bit line and source line for that bit position. The bit lines and source lines are longer and shorter at different word line locations, causing a resistance body effect. A clamping transistor couples the bit line to a sensing circuit when reading, applying a current through the bit cell and producing a read voltage compared by the sensing circuit to a reference such as a comparable voltage from a reference bit cell circuit having a similar structure. A drive control varies an input to the switching transistor as a function of the word line location, e.g., by word line address, to offset the different bit and source line resistances.
Abstract:
Circuits and methods for compensating mismatches in sense amplifiers are disclosed. In one example, a circuit is disclosed. The circuit includes: a first branch, a second branch, a first plurality of trimming transistors and a second plurality of trimming transistors. The first branch comprises a first transistor, a second transistor, and a first node coupled between the first transistor and the second transistor. The second branch comprises a third transistor, a fourth transistor, and a second node coupled between the third transistor and the fourth transistor. The first node is coupled to respective gates of the third transistor and the fourth transistor. The second node is coupled to respective gates of the first transistor and the second transistor. The first plurality of trimming transistors is coupled to the second transistor in parallel. The second plurality of trimming transistors is coupled to the fourth transistor in parallel.
Abstract:
A memory device is disclosed in the present disclosure. The memory device includes multiple memory cells, multiple reference cells, and multiple sense amplifiers. The memory cells are coupled to first inputs of the sense amplifiers, respectively. The reference cells are coupled to second inputs of the sense amplifiers, respectively. The reference cells are coupled to each other.
Abstract:
A method includes forming an insulator over a substrate. The insulator includes a first electrode, a second electrode, and a resistive element between the first electrode and the second electrode. The insulator is transformed into a resistor by applying a voltage to the insulator. The resistor is electrically connected to a transistor after transforming the insulator into the resistor.
Abstract:
The present disclosure describes an adjustment circuit that can be used, for example, in a memory system with partitioned memory blocks. The adjustment circuit can include a controller circuit, a timer circuit, and a temperature adaptive reference (TAR) generator. The controller circuit can be configured to output a control signal that indicates a memory type (e.g., code memory or data memory) associated with a partitioned memory block. The timer circuit can be configured to output a timing signal for a read memory operation based on the control signal. And, the TAR generator can be configured to adjust a verify reference current for a verify memory operation based on temperature, where the verify reference current is set based on the control signal.
Abstract:
A memory device includes a plurality of sense amplifiers, a plurality of memory cells, a plurality of data lines, a plurality of reference cells, and a connection line. The memory cells are coupled to a plurality of first inputs of the plurality of sense amplifiers respectively. The data lines are coupled to a plurality of second inputs of the plurality of sense amplifiers respectively. The reference cells are arranged in a plurality of columns respectively and coupled to the plurality of data line respectively. Each of the plurality of reference cells includes a plurality of resistive elements. The connection line is coupled to the plurality of data lines. In a read mode, one of the sense amplifiers is configured to access the plurality of resistive elements arranged in at least one of the plurality of columns.