摘要:
A method of manufacturing a resorbable balloon designed to contain bone cement for vertebroplasty or kyphoplasty applications is described. The resorbable balloon can be inserted into a vertebral body following vertebral cavitation and filled with bone cement. The balloon remains in place in the vertebral body and resorbs over time. Methods and apparatus are also described for delivering therapeutic agents using collapsible, resorbable balloons. The balloons may be nested and filled with various therapeutic agents that are released over time at rates dependent upon structures and degradation rates of the balloons. Furthermore, the function of the hollow devices can encompass both encapsulation and therapeutic substance delivery roles simultaneously.
摘要:
The present invention relates to methods of making and using composites and scaffolds as implantable devices useful for tissue repair, guided tissue regeneration, and tissue engineering. In particular, the present invention relates to methods of making and using compression molded resorbable thermoplastic polymer composites which can be subsequently processed with non-organic solvents to create porous, resorbable thermoplastic polymer scaffolds or composite scaffold with interconnected porosity. Furthermore, these composites or scaffolds can be coated with an organic and/or inorganic material.
摘要:
The present invention relates to a device comprising a cell carrier portion containing regenerative cells, e.g., stem and progenitor cells, and a cell carrier containment portion. The device is useful for the treatment of bone related disorders, including spinal fusion related disorders and long bone or flat bone related defects. The device may be used in conjunction with disclosed automated systems and methods for separating and concentrating regenerative cells.
摘要:
Cell-loaded devices or prostheses having various applications such as insertion into body passages are disclosed. The prostheses include cell carrier portions which are compatible with living tissue and which are loaded with therapeutic cell populations, and the prostheses can be applied within or replace one or more of narrow segments, environments which may be difficult to access or luminal areas of the body such as parts of blood vessels. In the context of blood vessels, the cell-loaded devices or prostheses can line or otherwise treat with therapeutic cell populations inner walls of damaged blood vessels and surrounding parenchyma or other organs.
摘要:
Regenerative cells present in adipose tissue are used to treat patients, including patients with musculoskeletal diseases or disorders. Methods of treating patients include processing adipose tissue to deliver a concentrated amount of regenerative cells obtained from the adipose tissue to a patient. The methods may be practiced in a closed system so that the stem cells are not exposed to an external environment prior to being administered to a patient. Accordingly, in a preferred method, regenerative cells present in adipose tissue are placed directly into a recipient along with such additives necessary to promote, engender or support a therapeutic musculoskeletal benefit.
摘要:
A method of forming substrate vias in a GaAs wafer begins with a GaAs wafer in which all top side processing steps are complete. The top surface of the GaAs wafer includes top surface via contacts, which are in electrical contact with the bottom surface ground plane once the ground vias are complete. A protective layer is formed on the top surface of the wafer to protect the finished integrated circuitry. A portion of the substrate is removed from the bottom surface to achieve a thin layer of substrate material. The bottom surface of the thinned substrate is metalized with a first metal layer. Laser via holes are drilled into the thinned substrate from the bottom surface of the wafer to within a few microns from the top surface metal via contacts. The laser holes are drilled by emitting a controlled number of single pulses over the selected via location. The substrate vias are subsequently wet etched to remove the remaining substrate thickness and the bottom surface of the wafer and the substrate via holes are metalized with a second metal layer. The second metal layer fills the via holes and establishes electrical contact between the top surface via contacts and the bottom surface ground plane. In a final step, the protective layer is removed from the top surface of the wafer.