Abstract:
A semiconductor integrated circuit device has a plurality of CMOS-type base cells arranged on a semiconductor substrate and m wiring layers, and gate array type logic cells are composed of the base cells and the wiring layers. Wiring within and between the logic cells is constituted by using only upper n (n
Abstract:
A semiconductor integrated circuit device has a plurality of CMOS-type base cells arranged on a semiconductor substrate and m wiring layers, and gate array type logic cells are composed of the base cells and the wiring layers. Wiring within and between the logic cells is constituted by using only upper n (n
Abstract:
A semiconductor integrated circuit device has a plurality of CMOS-type base cells arranged on a semiconductor substrate and m wiring layers, and gate array type logic cells are composed of the base cells and the wiring layers. Wiring within and between the logic cells is constituted by using only upper n (n
Abstract:
A semiconductor integrated circuit device has a plurality of CMOS-type base cells arranged on a semiconductor substrate and m wiring layers, and gate array type logic cells are composed of the base cells and the wiring layers. Wiring within and between the logic cells is constituted by using only upper n (n
Abstract:
A package design method for a semiconductor device of designing a package including a package substrate provided with a wiring pattern, a chip mounted on the package substrate, and a sealing resin which covers the package substrate and the chip, and the wiring pattern including an external connection terminal and an internal connection terminal connected to the chip, the method comprising: setting an acceptable noise value of the package; designing a package layout on the basis of information on connection between the package substrate and the chip; and performing an optimization on package layout data so that an amount of noises remains within a range which is set beforehand, on the basis of the package layout data obtained in the designing process of the package layout.
Abstract:
An air bag system is provided in which an air bag stored in a folded state in a vehicle is adapted to be inflated by a gas supplied from an inflator through a diffuser so as to protect an occupant of the vehicle. In the air bag system, the diffuser is disposed on one side of the inflator such that the diffuser and the inflator are substantially aligned with each other, and the diffuser includes a gas feed portion that is exposed to a gas inlet formed in a generally middle portion of the air bag as viewed in a longitudinal direction thereof.
Abstract:
In case that a size of an upper layer semiconductor chip is larger than a lower layer semiconductor chip, a semiconductor chip is packed without damaging it. In a semiconductor apparatus in which a second semiconductor chip 103 is laminated on a first semiconductor chip 102, and accommodated in one package, at least one side among four sides which configure an outer edge of the second semiconductor chip 103 is configured in such a manner that it is larger than four sides which configure an outer edge of the first semiconductor chip 102, and thereby, a protruding portion which is protruded from the outer edge of the first semiconductor chip 102 is provided, and a convex supporting part 110 is provided on a surface of a circuit substrate 101 on which the first semiconductor chip 102 and the second semiconductor chip 103 are laminated, and the protruding portion is configured in such a manner that it can be supported by the convex supporting part 110.
Abstract:
Spindle motor utilizing a dynamic-pressure bearing device having a full-fill structure and capable of discharging air bubbles from the lubricating oil after it is charged into the bearing device, as well as air bubbles appearing in the oil due to cavitation in handling. Thrust and radial bearing sections are configured within bearing clearances in between the rotor, the shaft, and a shaft-encompassing hollow bearing member. A communicating passage enabling the oil to redistribute itself within the bearing clearances is formed in the bearing member. At least one ray-like groove that reaches from the radially inward edge of dynamic-pressure-generating grooves in the thrust bearing section to the rim of the shaft-encompassing hollow is furnished in the bearing member. When the motor rotates the air bubbles are stirred and minced by the ray-like groove, and migrate toward release at the single oil-air interface.
Abstract:
To provide a method of designing a semiconductor integrated circuit with a high workability also in an increase in a scale of an LSI and an enhancement in an integration and designing a semiconductor integrated circuit system in which an unnecessary radiation is reduced and which is excellent in a heat characteristic, a reverse design flow to that in the conventional art is implemented, and a mounting substrate such as a printed-circuit board is first designed and a package substrate for mounting an LSI is designed based on a result of the design of the mounting substrate, and a layout design of the LSI to be mounted on the package substrate is then carried out.
Abstract:
In a radial minute gap between a substantially columnar shaft and an inner peripheral face of a substantially cylindrical sleeve, oil is retained and a radial dynamic pressure bearing is formed. A plurality of recessed portions are arranged in a circumferential direction on at least one of an outer peripheral face of the shaft and the inner peripheral face of the sleeve and a first hill portion is provided to an axial end portion of each the recessed portion. Thus, it is possible to achieve a dynamic pressure bearing with which sufficient radial shaft support can be obtained in spite of a short axial length.