Abstract:
A method of forming patterns for a semiconductor device includes preparing a hardmask composition including a carbon allotrope, a spin-on hardmask (SOH) material, an aromatic ring-containing polymer, and a solvent, applying the hardmask composition to an etching target layer, forming a hardmask by heat-treating the applied hardmask composition, forming a photoresist pattern on the hardmask, forming a hardmask pattern by etching the hardmask using the photoresist pattern as an etching mask, and forming an etched pattern by etching the etching target layer using the hardmask pattern as an etching mask.
Abstract:
A method of forming fine patterns of a semiconductor device according to a double patterning process that uses acid diffusion is provided. In this method, a plurality of first mask patterns are formed on a substrate. A capping film including an acid source is formed on the exposed surface areas of the plurality of first mask patterns. A second mask layer is formed on the capping films. A plurality of acid diffused regions are formed within the second mask layer by diffusing acid obtained from the acid source from the capping films into the second mask layer. A plurality of second mask patterns are formed of residual parts of the second mask layer which remain after removing the acid diffused regions of the second mask layer.
Abstract:
A method of forming a mask pattern and a method of fabricating a semiconductor device, the method of forming a mask pattern including providing a substrate including a plurality of patterns thereon; forming a mask material solution layer such that the mask material solution layer covers the patterns on the substrate; and applying a liquid material to remove an upper portion of the mask material solution layer, wherein the mask material solution layer includes a fluorine additive concentrated at the upper portion of the mask material solution layer.
Abstract:
A method of fabricating a semiconductor device is disclosed comprising the steps of: providing a substrate having a first region, a second region and a plurality of gate electrodes which are formed on the first and second regions of the substrate; forming a mask film to expose the first region of the substrate while covering the second region of the substrate, such that the mask film has a negative lateral profile at a boundary between the first and second regions of the substrate; forming sigma trenches in the first region of the substrate by etching the first region of the substrate using the mask film and the gate electrodes as a mask; and forming an epitaxial layer in each of the sigma trenches.
Abstract:
A manufacturing method of a semiconductor device includes forming a hard mask layer on a semiconductor substrate using a hard mask composition. Hard mask patterns are formed by patterning the hard mask layer. Semiconductor patterns are formed by etching the semiconductor substrate using the hard mask patterns. The hard mask composition includes a plurality of first carbon nanotubes (CNTs) having a first length, a plurality of second CNTs having a second length, which is at least 3 times the first length, and a dispersing agent in which the first CNTs and the second CNTs are dispersed. The total mass of the first CNTs is 1 to 2.5 times the total mass of the second CNTs.
Abstract:
Provided are a method of forming patterns and a method of manufacturing an integrated circuit device. In the method of forming patterns, a photoresist pattern having a first opening exposing a first region of a target layer is formed. A capping layer is formed at sidewalls of the photoresist pattern defining the first opening. An insoluble region is formed around the first opening by diffusing acid from the capping layer to the inside of the photoresist pattern. A second opening exposing a second region of the target layer is formed by removing a soluble region spaced apart from the first opening, with the insoluble region being interposed therebetween. The target layer is etched using the insoluble region as an etch mask.
Abstract:
A method of forming a pattern of a semiconductor device includes providing a substrate, forming a photoresist layer by coating a resist composition including an acid generator and a first resin, the first resin having an acid-labile group, exposing the photoresist layer, forming a photoresist pattern by negatively developing the photoresist layer using a developing solution including an organic solvent, coating a capping composition including a second resin and the organic solvent on the substrate having the photoresist pattern formed thereon, and attaching a capping layer on upper and side surfaces of the photoresist pattern, by baking the capping composition and developing the capping composition using the developing solution including the organic solvent.
Abstract:
A method of forming fine patterns of a semiconductor device according to a double patterning process that uses acid diffusion is provided. In this method, a plurality of first mask patterns are formed on a substrate. A capping film including an acid source is formed on the exposed surface areas of the plurality of first mask patterns. A second mask layer is formed on the capping films. A plurality of acid diffused regions are formed within the second mask layer by diffusing acid obtained from the acid source from the capping films into the second mask layer. A plurality of second mask patterns are formed of residual parts of the second mask layer which remain after removing the acid diffused regions of the second mask layer.
Abstract:
Provided are a thinner composition, which may be generally used for an extreme ultraviolet (EUV) photoresist as well as KrF and ArF photoresists and exhibits improved performance in reduced resist coating (RRC) and edge bead removal (EBR), and which has an excellent pipe cleaning capability, and a method of treating a substrate surface by using the thinner composition. The thinner composition includes a C2-C4 alkylene glycol C1-C4 alkyl ether acetate, a C2-C3 alkylene glycol C1-C4 alkyl ether, and a cycloketone.
Abstract:
A method of forming a pattern is disclosed. The method includes preparing a composition that includes a solvent and a polymer including a repeating unit in which at least one isocyanurate unit having a first structure is connected to another isocyanurate unit having a second structure different from the first structure; applying the composition on a substrate to form an underlayer; forming a photoresist layer on the underlayer; etching the photoresist layer to form a photoresist pattern; and patterning the substrate using the photoresist pattern.