Abstract:
A method of operating a variable resistance memory device comprises determining a level of an access voltage based on a number of rows or columns of a cell array, and supplying the access voltage having the determined level to the cell array.
Abstract:
A nonvolatile memory device includes a memory cell array having a first plane and a second plane and an address decoder connected to the first plane through first string select lines and connected to the second plane through second string select line. The address decoder provides a string select signal and a string unselect signal to the first and second string select lines. The address decoder independently provides the string select signal and the string unselect signal to the first and second string select lines in each plane based on different string select line addresses corresponding to the first and second planes.
Abstract:
A nonvolatile memory system includes a nonvolatile memory device and a memory controller that controls the nonvolatile memory device. The nonvolatile memory device includes multiple memory blocks. Each of the memory blocks includes memory cells. Each of the memory cells has any one of an erase state and one of multiple different program states. An operation method of the nonvolatile memory system includes receiving a physical erase command from an external device. The operation method also includes performing a fast erase operation, responsive to the received physical erase command, with respect to at least one memory block so that first memory cells of the at least one memory block have a fast erase state different from the erase state.
Abstract:
A nonvolatile memory device includes a cell array including a plurality of cell strings extending on a substrate in a vertical direction, a page buffer connected to a plurality of bit lines and configured to store sensing data of the cell array in a sensing operation, a voltage generator configured to provide voltages to a plurality of word lines and the plurality of bit lines, and an input/output buffer configured to temporarily store the sensing data received in a data dump from the page buffer and to output the temporarily stored data to an external device. The nonvolatile memory device further includes control logic configured to set a status of the nonvolatile memory device to a ready state after the sensing data is dumped to the input/output buffer and before recovery of the cell array from a bias voltage of the sensing operation is complete.
Abstract:
A method of operating a storage device having a nonvolatile memory including at least one memory block having a plurality of sub-blocks includes reading backup data of backup memory cells having a highest program state among a plurality of memory cells connected to at least one word line of a sub-block which is not erase-requested adjacent to an erase-requested sub-block among the sub-blocks. The method includes storing the backup data, erasing the erase-requested sub-block, and reprogramming the backup memory cells having the highest program state on the basis of the backup data.
Abstract:
A storage device includes a nonvolatile memory device including memory blocks and a controller configured to control the nonvolatile memory device. Each of the memory blocks includes a plurality of cell strings each including at least one selection transistor and a plurality of memory cells stacked on a substrate in a direction perpendicular to the substrate. The controller controls the nonvolatile memory device to perform a read operation on some of selection transistors of a selected one of the memory blocks and to perform a program operation on the selection transistors of the selected memory block according to a result of the read operation.
Abstract:
A nonvolatile memory device may include a memory cell array which is arranged in rows and columns and has multi-level memory cells; a voltage generator providing a plurality of read voltages to a selected row of the memory cell array; and control logic performing a plurality of page read operations using the read voltages. A first read voltage and a second read voltage among the plurality of read voltages are each associated with a higher probability of occurrence of a bit read error than at least one other read voltage among the plurality of read voltages. The control logic uses the first read voltage and the second read voltage in different page read operations than each other.
Abstract:
A flash memory controller for a flash memory system includes an ECC circuit that receives first page data and second page data read from the flash memory, and respectively counts a first number of fail bits in the first page data and a second number of fail bits in the second page data, an abnormal wordline detector configured to compare the first number of fail bits and second number of fail bits to derive a fail bit change rate between the first page data and the second page data, and generate an abnormal wordline detection signal in response to the fail bit change rate, and a control unit that controls operation of the flash memory in response to the abnormal wordline detection signal.
Abstract:
A nonvolatile memory includes a memory cell array, a row decoder circuit, and a page buffer circuit. The row decoder circuit applies a turn-on voltage to string selection lines, which are connected to string selection transistors of a selected memory block, at a first precharge operation in response to a write command received from an external device. The page buffer circuit applies, in response to the write command, a first voltage to bit lines, which are connected to the string selection transistors, through a first precharge circuit at the first precharge operation regardless of loaded data and applies the first voltage and a second voltage to the bit lines through a second precharge circuit at a second precharge operation based on the loaded data. During the first precharge operation, write data is loaded onto the page buffer circuit.
Abstract:
A three-dimensional flash memory device includes a plurality of cell strings arranged in a direction perpendicular to a substrate. The three-dimensional flash memory includes a first dummy word line disposed between a ground selection line and a main word line, and a second dummy word line disposed between the main word line and a string selection line and being asymmetric with respect to the first dummy word line. Voltages of different levels are respectively applied to the first and second dummy word lines during a read operation.