Abstract:
An object of the present invention is to provide a highly-reliable content addressable memory. Provided is a content addressable memory including: a plurality of CAM cells; a word line joined to the CAM cells; a plurality of bit lines joined to the CAM cells; a plurality of search lines joined to the CAM cells; a match line joined to the CAM cells; a match amplifier joined to the match line; and a selection circuit that can select the output of the match amplifier in accordance with the value of the word line.
Abstract:
A semiconductor storage device includes a plurality of memory cells arranged in a matrix, a word line provided corresponding to a memory cell row, a dummy word line formed in a metal interconnection layer adjacent to a metal interconnection layer in which the word line is formed, a word driver circuit configured to drive the word line, and a dummy word driver circuit configured to increase voltage on the word line based on interline capacitance between the word line and the dummy word line.
Abstract:
A semiconductor memory device including a pair of first bit lines extended in a first direction, a pair of second bit lines extended in the first direction, a first word line extended in a second direction crossing the first direction, a second word line extended in the second direction, a memory cell surrounded by the first bit line, the second bit line, the first word line, and the second word line, and including a drive transistor, a first transfer transistor coupled with one of the pair of first bit lines, and having a gate coupled with the first word line, a second transfer transistor coupled with one of the pair of second bit lines, and having a gate coupled with the second word line, and a load transistor, a write drive circuit that transfers data to the memory cell.
Abstract:
A semiconductor storage device having a plurality of low power consumption modes is provided.The semiconductor storage device includes a plurality of memory modules where a plurality of low power consumption modes can be set and cancelled based on a first and a second control signals. At least a part of memory modules of the plurality of memory modules have a propagation path that propagates an inputted first control signal to a post stage memory module. The second control signal is inputted into each of the plurality of memory modules in parallel. Setting and cancelling of the first low power consumption mode of each memory module are performed based on a combination of the first control signal that is propagated through the propagation path and the second control signal. Setting and cancelling of the second low power consumption mode, in which regions where a power source is shut down are different from those in the first low power consumption mode, of each memory module are sequentially performed according to the first control signal that is propagated through the propagation path.
Abstract:
A multi-port memory includes a memory cell, first and second word lines, first and second bit lines, first and second address terminals, and an address control circuit. The address control circuit controls the first and second word lines independently of each other on the basis of address signals that are respectively supplied to the first and second address terminals in a normal operation mode, and activates both of the first and second word lines that are coupled to the same memory cell on the basis of the address signal that is supplied to one of the first and second address terminals in a disturb test mode.
Abstract:
A semiconductor device capable of detecting whether test operation is normal is provided. The semiconductor device includes a plurality of memory cells arranged in a matrix, a plurality of word lines provided corresponding to each of the rows of the plurality of memory cells respectively, a decoder for generating driving signals for driving the plurality of word lines, and a detection circuit provided between the plurality of word lines and the decoder for simultaneously raising the plurality of word lines by test operation and detecting whether or not the rising state of the plurality of word lines is normal.
Abstract:
A semiconductor device with a memory unit of which the variations in the operation timing are reduced is provided. For example, the semiconductor device is provided with dummy bit lines which are arranged collaterally with a proper bit line, and column direction load circuits which are sequentially coupled to the dummy bit lines. Each column direction load circuit is provided with plural NMOS transistors fixed to an off state, predetermined ones of which have the source and the drain suitably coupled to any of the dummy bit lines. Load capacitance accompanying diffusion layer capacitance of the predetermined NMOS transistors is added to the dummy bit lines, and corresponding to the load capacitance, the delay time from a decode activation signal to a dummy bit line signal is set up. The dummy bit line signal is employed when setting the start-up timing of a sense amplifier.
Abstract:
A semiconductor memory device includes a memory array including a plurality of memory cells arranged in a matrix form, a plurality of bit line pairs disposed in the columns of the memory cells, a plurality of word lines disposed in the rows of the memory cells, a write drive circuit adapted to transfer data to a bit line pair in a selected column in accordance with write data, and a control circuit that deselects the word lines during a test and drives a low-potential side bit line of the bit line pair in the selected column to a negative voltage level in accordance with the potentials of bit lines in the selected column.
Abstract:
A semiconductor storage device provided can increase a write margin and suppress increase of a chip area. The semiconductor storage device includes plural memory cells arranged in a matrix; plural bit-line pairs arranged corresponding to each column of the memory cells; a write driver circuit which transmits data to a bit-line pair of a selected column according to write data; and a write assist circuit which drives a bit line on a low potential side of the bit-line pair of a selected column to a negative voltage level. The write assist circuit includes first signal wiring; a first driver circuit which drives the first signal wiring according to a control signal; and second signal wiring which is coupled to the bit line on the low-potential side and generates a negative voltage by the driving of the first driver circuit, based on inter-wire coupling capacitance with the first signal wiring.
Abstract:
A semiconductor device avoids the disturb problem and the collision between write and read operations in a DP-SRAM cell or a 2P-SRAM cell. The semiconductor device 1 includes a write word line WLA and a read word line WLB each coupled to memory cells 3. A read operation activates the read word line WLB corresponding to the selected memory cell 3. A write operation activates the write word line WLA corresponding to the selected memory cell 3. The selected write word line WLA is activated after activation of the selected read word line WLB in an operation cycle that performs both read and write operations.