Abstract:
A package on package structure may be formed by fabricating or providing a bottom package having a substrate, at least one die on top of the substrate, and bonding pads on the top of the substrate. Next, a frame is formed on the bonding pads and connected to the bonding pads. Next, a package material is molded over the top of the substrate to encapsulate the frame, the die, and the pads or substantially encapsulates these components. Next, a portion of the molded package material is removed to expose at least a portion of the frame. The exposed frame portions are formed such that a desired fan in or fan out configuration is obtained. Next, a non-conductive layer is formed on the exposed frame. Last, a second package having a die or chip is connected to the exposed portion of the frame to form a package on package structure.
Abstract:
A high-speed, high-density Input/Output bridge couples dies on a substrate to each other using a flexible connector that is attached to the substrate using solder balls disposed in openings in the substrate. Thus, the bulky, male-to-female connectors and/or silicon bridges are eliminated while still permitting dies disposed on the substrate to be coupled together.
Abstract:
The present disclosure provides semiconductor packages and methods for fabricating PoP semiconductor packages. The PoP semiconductor package may comprise a first semiconductor package, the first semiconductor package comprising an anodized metal lid structure comprising (i) a central cavity having a central cavity opening direction and (ii) at least one perimeter cavity having a perimeter cavity opening direction facing in an opposite direction of the central cavity opening direction, a first semiconductor device arranged in the central cavity of the anodized metal lid structure, a redistribution layer electrically coupled to the first semiconductor device, wherein a conductive trace formed in the redistribution layer is exposed to the at least one perimeter cavity, and solder material arranged in the at least one perimeter cavity, and a second semiconductor package, the second semiconductor package comprising at least one conductive post, wherein the at least one conductive post is electrically coupled to the solder material arranged in the at least one perimeter cavity.
Abstract:
A semiconductor package according to some examples of the disclosure may include a base with a first redistribution layer on one side, first and second side by side die attached to the base on an opposite side from the first redistribution layer, an interposer attached to active sides of the first and second die to provide an interconnection between the first and second die, a plurality of die vias extending from the first and second die to a second redistribution layer on a surface of the package opposite the first redistribution layer, and a plurality of package vias extending through the package between the first and second redistribution layers.
Abstract:
A method and apparatus for testing near field magnetic fields of electronic devices. The method comprises measuring a magnetic field using a loop antenna that is oriented in a first direction. The loop antenna is swept through a desired range of azimuth angles while measuring the magnetic field. Once the first direction testing is completed, the loop antenna is changed to a second orientation direction. The magnetic field is then measured in the second orientation direction and is swept through a desired range of orientation angles in the second direction. The apparatus provides a loop antenna connected to a coaxial probe, with the coaxial cable serving as the center conductor, and two outer conductors. An axle is mounted to the loop antenna and connected to a step motor. A servo motor is also provided for moving the arm assembly.
Abstract:
Many aspects of an IC package are disclosed. The IC package includes a substrate, an integrated circuit die, a vertical capacitor and a conductive layer. The substrate includes a first plurality of substrate pads. The integrated circuit die is coupled to the first plurality of substrate pads embedded in a first layer of the substrate. The vertical capacitor has a first electrode, a second electrode and a first resistive layer. The first electrode is coupled to the first resistive layer. The first resistive layer is coupled to a first substrate pad embedded in the first layer of the substrate. The conductive layer is formed over a first surface and the second electrode of the vertical capacitor. The conductive layer encapsulates the vertical capacitor. The first and second electrodes are parallel to each other and perpendicular to a planar surface of the substrate.
Abstract:
A passive discrete device may include a first asymmetric terminal and a second asymmetric terminal. The passive discrete device may further include first internal electrodes extended to electrically couple to a first side and a second side of the first asymmetric terminal. The passive discrete device may also include second internal electrodes extended to electrically couple to a first side and a second side of the second asymmetric terminal.
Abstract:
A package-on-package (PoP) structure includes a first die, a second die, and a memory device electrically coupled to the first die and the second die by an interposer between the first die and the second die. The interposer includes copper-filled vias formed within a mold.
Abstract:
A method of additive tuning a resistor includes measuring resistance across a recessed area of the resistor using at least two terminals, depositing resistance material from an ink jet across the recessed area of the resistor device concurrently with the measuring resistance, and ceasing the depositing upon obtaining a measurement of a resistance threshold value.
Abstract:
A fan-out wafer level package structure may include a multilayer redistribution layer (RDL). The multilayer RDL may be configured to couple with terminals of an embedded capacitor. The multilayer RDL may include sections with fewer layers than other sections of the multilayer RDL according to a selected equivalent series resistance (ESR) control pattern.