Abstract:
A memory control method, a memory storage device, and a memory control circuit unit are disclosed. The method includes: performing a first write operation based on a first programming mode to sequentially write first data to a plurality of first chip enabled regions via a plurality of channels; after the first write operation is performed, performing a second write operation based on a second programming mode to sequentially write second data to the first chip enabled regions and at least one second chip enabled region via the channels. A total number of the first chip enabled regions is larger than a total number of the second chip enabled region.
Abstract:
A memory control method, a memory storage device, and a memory control circuit unit are disclosed. The method includes: performing a first write operation based on a first programming mode to sequentially write first data to a plurality of first chip enabled regions via a plurality of channels; after the first write operation is performed, performing a second write operation based on a second programming mode to sequentially write second data to the first chip enabled regions and at least one second chip enabled region via the channels. A total number of the first chip enabled regions is larger than a total number of the second chip enabled region.
Abstract:
A data writing method, a memory storage device, and a memory control circuit unit are provided. The method includes: writing data into at least one first logical unit and at least one second logical unit, and the data includes first data and second data; storing first data into at least one first physical erasing unit and filling the first physical erasing unit with the first data; storing second data into at least one second physical erasing unit; determining whether a remaining space of each second physical erasing unit is less than a threshold; if the remaining space of one of the at least one second physical erasing unit is less than the threshold, selecting at least one fourth physical erasing unit from a spare area and writing the second data into the at least one second physical erasing unit and the at least one fourth physical erasing unit.
Abstract:
A memory address management method, a memory controller, and a memory storage device are provided. The memory address management method includes: obtaining memory information of a rewritable non-volatile memory module and formatting logical addresses according to the memory information to establish a file system, such that an allocation unit of the file system includes a lower logical programming unit and an upper logical programming unit. Here, the memory information includes a programming sequence, the allocation unit starts with the lower logical programming unit and ends with the upper logical programming unit, and an initial logical address of a data region in the file system belongs to the lower logical programming unit. Accordingly, an access bandwidth of the memory storage device is expanded.
Abstract:
A clock switching method for a memory storage apparatus is provided. The method includes: setting a value of the clock as a first operation frequency when an operation mode is switched to an initial state; determining whether a first continuous accessing time of accessing continuously a rewritable non-volatile memory module is larger than a first setting value during a period in which the operation mode is at the initial state; re-setting the value of the clock as a second operation frequency, which is smaller than the first operation frequency, to switch the operation mode to a power saving state if the first continuously access time is larger than the first setting value; and re-setting the value of the clock as the first operation frequency to switch the operation mode to a general state during a period in which the operation mode is at the power saving state.
Abstract:
A clock switching method for a memory storage apparatus is provided. The method includes: setting a value of the clock as a first operation frequency when an operation mode is switched to an initial state; determining whether a first continuous accessing time of accessing continuously a rewritable non-volatile memory module is larger than a first setting value during a period in which the operation mode is at the initial state; re-setting the value of the clock as a second operation frequency, which is smaller than the first operation frequency, to switch the operation mode to a power saving state if the first continuously access time is larger than the first setting value; and re-setting the value of the clock as the first operation frequency to switch the operation mode to a general state during a period in which the operation mode is at the power saving state.
Abstract:
A data writing method, a memory storage device, and a memory control circuit unit are provided. The method includes: writing data into at least one first logical unit and at least one second logical unit, and the data includes first data and second data; storing first data into at least one first physical erasing unit and filling the first physical erasing unit with the first data; storing second data into at least one second physical erasing unit; determining whether a remaining space of each second physical erasing unit is less than a threshold; if the remaining space of one of the at least one second physical erasing unit is less than the threshold, selecting at least one fourth physical erasing unit from a spare area and writing the second data into the at least one second physical erasing unit and the at least one fourth physical erasing unit.
Abstract:
A memory address management method, a memory controller, and a memory storage device are provided. The memory address management method includes: obtaining memory information of a rewritable non-volatile memory module and formatting logical addresses according to the memory information to establish a file system, such that an allocation unit of the file system includes a lower logical programming unit and an upper logical programming unit. Here, the memory information includes a programming sequence, the allocation unit starts with the lower logical programming unit and ends with the upper logical programming unit, and an initial logical address of a data region in the file system belongs to the lower logical programming unit. Accordingly, an access bandwidth of the memory storage device is expanded.
Abstract:
A method for programming data is provided for a memory storage device having a rewritable non-volatile memory module and a buffer memory. The method includes receiving a plurality of data including a first-type data and at least one second-type data, and a size of the first-type data is smaller than a data size threshold. The method includes temporarily storing the plurality of data into the buffer memory, and programming the first-type data and at least one part of the at least one second-type data stored in the buffer memory into a physical program unit set if it is determined that the plurality of data are complied with a predetermined condition. The method includes obtaining writing statuses of the first-type data and the at least one part of the at least one second-type data at the same time.
Abstract:
A method for programming data is provided for a memory storage device having a rewritable non-volatile memory module and a buffer memory. The method includes receiving a plurality of data including a first-type data and at least one second-type data, and a size of the first-type data is smaller than a data size threshold. The method includes temporarily storing the plurality of data into the buffer memory, and programming the first-type data and at least one part of the at least one second-type data stored in the buffer memory into a physical program unit set if it is determined that the plurality of data are complied with a predetermined condition. The method includes obtaining writing statuses of the first-type data and the at least one part of the at least one second-type data at the same time.