摘要:
A color-changing polymeric material is provided. The material is formed from a thermoplastic composition containing a continuous phase that includes a matrix polymer, colorant, microinclusion additive, and nanoinclusion additive, wherein the microinclusion additive and nanoinclusion additive are dispersed within the continuous phase in the form of discrete domains. A porous network is formed in the polymeric material when subjected to a deformational strain in a solid state. The polymeric material exhibits a first color prior to being subjected to the deformational strain and a second color after being subjected to the deformational strain, the first color being different than the second color.
摘要:
A polyolefin material that is formed by solid state drawing of a thermoplastic composition containing a continuous phase that includes a polyolefin matrix polymer and nanoinclusion additive is provided. The nanoinclusion additive is dispersed within the continuous phase as discrete nano-scale phase domains. When drawn, the nano-scale phase domains are able to interact with the matrix in a unique manner to create a network of nanopores.
摘要:
A polymeric material that includes a thermoplastic composition containing a continuous phase that includes a polyester and a copolyetherester elastomer is provided. The copolyetherester elastomer is dispersed within the continuous phase in the form of discrete domains. A porous network is defined within the thermoplastic composition that includes a plurality of nanopores.
摘要:
A method for forming biodegradable fibers is provided. The method includes blending polylactic acid with a polyepoxide modifier to form a thermoplastic composition, extruding the thermoplastic composition through a die, and thereafter passing the extruded composition through a die to form a fiber. Without intending to be limited by theory, it is believed that the polyepoxide modifier reacts with the polylactic acid and results in branching of its polymer backbone, thereby improving its melt strength and stability during fiber spinning without significantly reducing glass transition temperature. The reaction-induced branching can also increase molecular weight, which may lead to improved fiber ductility and the ability to better dissipate energy when subjected to an elongation force. Through selective control over this method, the present inventors have discovered that the resulting fibers may exhibit good mechanical properties, both during and after melt spinning.
摘要:
A polymeric material having anisotropic properties, such as mechanical properties (e.g., modulus of elasticity), thermal properties, barrier properties (e.g., breathability), and so forth, is provided. The anisotropic properties can be achieved for a single, monolithic polymeric material through selective control over the manner in which the material is formed. For example, one or more zones of the polymeric material can be strained to create a unique network of pores within the strained zone(s). However, zones of the polymeric material that are not subjected to the same degree of deformational strain will not have the same pore volume, and in some cases, may even lack a porous network altogether.
摘要:
A polymeric material that is capable of being employed as a build material and/or support material in a three-dimensional printer system is provided. The polymeric material is formed from a thermoplastic composition containing a continuous phase that includes a matrix polymer. A microinclusion additive and nanoinclusion additive are dispersed within the continuous phase in the form of discrete domains.
摘要:
A fabric that includes porous fibers is provided. The porous fibers are formed from a thermoplastic composition containing a continuous phase that includes a matrix polymer. A microinclusion additive and nanoinclusion additive may also be dispersed within the continuous phase in the form of discrete domains, wherein a porous network is defined in the composition that includes a plurality of nanopores having an average cross-sectional dimension of about 800 nanometers or less.
摘要:
A film that is formed from a thermoplastic composition is provided. The thermoplastic composition contains a rigid renewable polyester and a polymeric toughening additive. The toughening additive can be dispersed as discrete physical domains within a continuous matrix of the renewable polyester. An increase in deformation force and elongational strain causes debonding to occur in the renewable polyester matrix at those areas located adjacent to the discrete domains. This can result in the formation of a plurality of voids adjacent to the discrete domains that can help to dissipate energy under load and increase tensile elongation. To even further increase the ability of the film to dissipate energy in this manner, the present inventors have discovered that an interphase modifier may be employed that reduces the degree of friction between the toughening additive and renewable polyester and thus reduces the stiffness (tensile modulus) of the film.
摘要:
A polyolefin material that is formed by solid state drawing of a thermoplastic composition containing a continuous phase that includes a polyolefin matrix polymer and nanoinclusion additive is provided. The nanoinclusion additive is dispersed within the continuous phase as discrete nano-scale phase domains. When drawn, the nano-scale phase domains are able to interact with the matrix in a unique manner to create a network of nanopores.
摘要:
A method for forming a fiber is provided. The method comprises extruding a matrix polymer and a nanoinclusion additive to form a thermoplastic composition in which the nanoinclusion additive is dispersed within a continuous phase of the matrix polymer. The extruded thermoplastic composition is thereafter passed through a spinneret to form a fiber having a porous network containing a plurality of nanopores, wherein the average percent volume occupied by the nanopores within a given unit volume of the fiber is from about 3% to about 15% per cm3.