Abstract:
An apparatus for shielding a controlled pressure environment, including a shield assembly with: a gate disc arranged for location in a chamber and including a first continuous surface facing an opening in the chamber and including an outer circumference extending past the opening in a radial direction orthogonal to a longitudinal axis passing through the chamber and the opening; and an at least one actuator arranged to displace the gate disc in an axial direction parallel to the longitudinal axis. The opening is arranged for connection to an inlet of a vacuum pump. In an example embodiment, the thermal system attains and maintains thermal equilibrium in the chamber and/or to shields the chamber from unwanted thermal affects by heating or cooling the gate disc to offset cooling or heat generated by the vacuum pump. For example, the gate disc is cooled to offset heat generated by a turbo-molecular pump.
Abstract:
A computer-implemented method for determining an optimized purge gas flow in a semi-conductor inspection metrology or lithography apparatus, comprising receiving a permissible contaminant mole fraction, a contaminant outgassing flow rate associated with a contaminant, a contaminant mass diffusivity, an outgassing surface length, a pressure, a temperature, a channel height, and a molecular weight of a purge gas, calculating a flow factor based on the permissible contaminant mole fraction, the contaminant outgassing flow rate, the channel height, and the outgassing surface length, comparing the flow factor to a predefined maximum flow factor value, calculating a minimum purge gas velocity and a purge gas mass flow rate from the flow factor, the contaminant mass diffusivity, the pressure, the temperature, and the molecular weight of the purge gas, and introducing the purge gas into the semi-conductor inspection metrology or lithography apparatus with the minimum purge gas velocity and the purge gas flow rate.
Abstract:
The present invention provides a local clean microenvironment near optical surfaces of an extreme ultraviolet (EUV) optical assembly maintained in a vacuum process chamber and configured for EUV lithography, metrology, or inspection. The system includes one or more EUV optical assemblies including at least one optical element with an optical surface, a supply of cleaning gas stored remotely from the one or more optical assemblies and a gas delivery unit comprising: a plenum chamber, one or more gas delivery lines connecting the supply of gas to the plenum chamber, one or more delivery nozzles configured to direct cleaning gas from the plenum chamber to a portion of the EUV assembly, and one or more collection nozzles for removing gas from the EUV optical assembly and the vacuum process chamber.
Abstract:
A scanning electron microscopy (SEM) system includes a plurality of electron-optical columns and a plurality of electron beam sources. The electron beam sources include an emitter including one or more emitter tips configured to generate one or more electron beams of a plurality of electron beams. The electron beam sources include a stack of one or more positioners configured to adjust a position of the emitter based on one or more measurements of the electron beam generated by the emitter. The emitter is configured to scan the one or more electron beams across an area surrounding a bore of an electron-optical column of the plurality of electron-optical columns. The electron beam source array includes a carrier plate and a source tower. The source tower is configured to adjust a position of the plurality of electron beam sources relative to a position of the plurality of electron-optical columns.
Abstract:
A permanent-magnet particle beam apparatus and method incorporating a non-magnetic portion for tunability are provided. The permanent-magnet particle beam apparatus includes a particle beam emitter that emits a charged particle beam, and includes a set of permanent magnets forming a magnetic field for controlling condensing of the charged particle beam. The permanent-magnet particle beam apparatus further includes a non-magnetic electrical conductor component situated with the set of permanent magnets to control a kinetic energy of the charged particle beam moving through the magnetic field.
Abstract:
A computer-implemented method for determining an optimized purge gas flow in a semi-conductor inspection metrology or lithography apparatus, comprising receiving a permissible contaminant mole fraction, a contaminant outgassing flow rate associated with a contaminant, a contaminant mass diffusivity, an outgassing surface length, a pressure, a temperature, a channel height, and a molecular weight of a purge gas, calculating a flow factor based on the permissible contaminant mole fraction, the contaminant outgassing flow rate, the channel height, and the outgassing surface length, comparing the flow factor to a predefined maximum flow factor value, calculating a minimum purge gas velocity and a purge gas mass flow rate from the flow factor, the contaminant mass diffusivity, the pressure, the temperature, and the molecular weight of the purge gas, and introducing the purge gas into the semi-conductor inspection metrology or lithography apparatus with the minimum purge gas velocity and the purge gas flow rate.
Abstract:
The present invention provides a local clean microenvironment near optical surfaces of an extreme ultraviolet (EUV) optical assembly maintained in a vacuum process chamber and configured for EUV lithography, metrology, or inspection. The system includes one or more EUV optical assemblies including at least one optical element with an optical surface, a supply of cleaning gas stored remotely from the one or more optical assemblies and a gas delivery unit comprising: a plenum chamber, one or more gas delivery lines connecting the supply of gas to the plenum chamber, one or more delivery nozzles configured to direct cleaning gas from the plenum chamber to a portion of the EUV assembly, and one or more collection nozzles for removing gas from the EUV optical assembly and the vacuum process chamber.
Abstract:
A scanning electron microscopy (SEM) system includes a plurality of electron-optical columns and a plurality of electron beam sources. The electron beam sources include an emitter including one or more emitter tips configured to generate one or more electron beams of a plurality of electron beams. The electron beam sources include a stack of one or more positioners configured to adjust a position of the emitter based on one or more measurements of the electron beam generated by the emitter. The emitter is configured to scan the one or more electron beams across an area surrounding a bore of an electron-optical column of the plurality of electron-optical columns. The electron beam source array includes a carrier plate and a source tower. The source tower is configured to adjust a position of the plurality of electron beam sources relative to a position of the plurality of electron-optical columns.
Abstract:
A permanent-magnet particle beam apparatus and method incorporating a non-magnetic portion for tunability are provided. The permanent-magnet particle beam apparatus includes a particle beam emitter that emits a charged particle beam, and includes a set of permanent magnets forming a magnetic field for controlling condensing of the charged particle beam. The permanent-magnet particle beam apparatus further includes a non-magnetic electrical conductor component situated with the set of permanent magnets to control a kinetic energy of the charged particle beam moving through the magnetic field.
Abstract:
An apparatus for shielding a controlled pressure environment, including a shield assembly with: a gate disc arranged for location in a chamber and including a first continuous surface facing an opening in the chamber and including an outer circumference extending past the opening in a radial direction orthogonal to a longitudinal axis passing through the chamber and the opening; and an at least one actuator arranged to displace the gate disc in an axial direction parallel to the longitudinal axis. The opening is arranged for connection to an inlet of a vacuum pump. In an example embodiment, the thermal system attains and maintains thermal equilibrium in the chamber and/or to shields the chamber from unwanted thermal affects by heating or cooling the gate disc to offset cooling or heat generated by the vacuum pump. For example, the gate disc is cooled to offset heat generated by a turbo-molecular pump.