Abstract:
Provided is a charged-particle-beam device capable of simultaneously cancelling out a plurality of aberrations caused by non-uniform distribution of the opening angle and energy of a charged particle beam. The charged-particle-beam device is provided with an aberration generation lens for generating an aberration due to the charged particle beam passing off-axis, and a corrective lens for causing the trajectory of the charged particle beam to converge on the main surface of an objective lens irrespective of the energy of the charged particle beam. The main surface of the corrective lens is disposed at a crossover position at which a plurality of charged particle beams having differing opening angles converge after passing through the aberration generation lens.
Abstract:
The charged particle beam application device is provided with a charged particle source and an objective lens that converges charged particle beam generated by the charged particle source onto a sample. In this case, the charged particle beam application device is further provided with an aberration generating element installed between the charged particle beam source and the objective lens, a tilt-use deflector installed between the aberration generating element and the objective lens, a deflection aberration control unit for controlling the aberration generating element, a first electromagnetic field superposing multipole installed between the aberration generating element and the objective lens, and an electromagnetic field superposing multipole control unit for controlling the first electromagnetic field superposing multipole. The aberration generating element has such a function that when the charged particle beam is tilted relative to the sample by the tilt-use deflector, a plurality of resulting aberrations are cancelled with one another. Moreover, the first electromagnetic field superposing multipole has a function to change the orbit of a charged particle beam having energy different from that of the main charged particle beam in the charged particle beam.
Abstract:
A purpose of the present invention is to provide a charged particle beam device that suppresses an off-axis amount when a field of view moves, said move causing an aberration, and allows large field of view moves to be carried out. In order to achieve the above-mentioned purpose, this charged particle beam device is provided with an objective lens and deflectors for field of view moves, said deflectors deflecting a charged particle beam, and is further provided with an accelerating tube positioned between the objective lens and the deflectors for field of view moves, a power source that applies a voltage to the accelerating tube, and a control device that controls the voltage to be applied to the power source in response to the deflection conditions of the deflectors for field of view moves.
Abstract:
In a charged particle beam device including an objective lens that focuses a charged particle beam; a first deflector that deflects the charged particle beam to emit the charged particle beam to a sample from a direction different from an ideal optical axis of the objective lens; and a second deflector that deflects a charged particle emitted from the sample, a charged particle focusing lens to focus the charged particle emitted from the sample is disposed between the sample and the second deflector and strengths of the objective lens and the charged particle focusing lens are controlled, according to deflection conditions of the first deflector.
Abstract:
There is provided a charged particle beam apparatus that includes a trajectory monitoring unit which is disposed above an objective lens (14) and which includes an optical element (12) having a lens action and a trajectory correcting deflector (10). An applied voltage and an excitation current of the optical element (12) are set to zero after a trajectory correction of a primary charged particle beam (30). Accordingly, the lens action and an aberration of the optical element (12) have no influence on resolution.